Difference between revisions of "2021 Denovo tutorial 1 with PDBID 1HW9"

From Rizzo_Lab
Jump to: navigation, search
(Focused Denovo Rescore)
(Focused Denovo Rescore)
 
(13 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
= I. Focused De Novo Design  =
 
= I. Focused De Novo Design  =
  
In the focused De Novo Design, we will generate the same ligand present in the structure by connecting fragments from scratch. Putting the generated fragments back into the pocket, we could check how our simulation works in terms of the protein we are interested in
+
In focused De Novo Design, we aim to generate a ligand that closely resembles Simvastatin in the binding pocket by connecting generated fragments from scratch. By putting the generated fragments back into the pocket through a variety of fragment assemblies, we can check how accurate simulation is in terms of the sampled ligand.
  
  
 
----
 
----
+
 
 
= '''Fragment Libraries''' =
 
= '''Fragment Libraries''' =
  
First, a focused fragment library will be generated based on the original ligand. The fragments would build the same ligand in an atomic structure.
+
First, a fragment library needs to be generated using the original ligand as the template. The generated fragments should build the same ligand seen in the crystalized structure.
  
Create a new directory for the fragment library, use the command:
+
Let us create a new directory for the fragment library, using the command:
  
 
  mkdir 010_dn_fraglib
 
  mkdir 010_dn_fraglib
  
Create a new input file for fragment generation, use the command:
+
Create a new input file for fragment generation, using the command:
  
  touch fragment.in
+
  vi fragment.in
  
Use the following parameters to answer default questions from the dock program (vi fragment.in, and put in the parameters):
+
Use the following parameters to answer the default questions from the DOCK program (vi fragment.in, and place in the following parameters):
  
 
  conformer_search_type                                        flex
 
  conformer_search_type                                        flex
Line 61: Line 61:
 
  dock6 -i fragment.in -o fragment.out
 
  dock6 -i fragment.in -o fragment.out
  
After the fragment library generation is complete, 6 files would be generated (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, and fraglib_torenv.dat)
+
After the fragment library generation is complete, 6 files shoulbe be seen in the current directory (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, and fraglib_torenv.dat)
  
Using the grew command, we can check the number of fragments generated. Scp the mol2 files and open the files in Viewdock using Chimera can see how they match with the original structure file.
+
Using the grep command, we can check the number of fragments generated. Copy the mol2 files to your local computer and open the files in Viewdock using Chimera. Chimera can visualize the fragments and show how well they match with the original crystallized ligand.
  
 
  grep -wc MOLECULE *.mol2 | wc -l
 
  grep -wc MOLECULE *.mol2 | wc -l
Line 71: Line 71:
 
= '''Focused Denovo Growth''' =
 
= '''Focused Denovo Growth''' =
  
The de novo dock would be run by using fragments generated from the library. The fragments would connect with each other fragments with some constraints such as charge and molecular weight. DOCK program would make the fragments connection in an appropriate way before adding another single fragment.
+
Next, we'll be using the fragments generated in the last step to build new small molecules for our system. The fragments will connect with each other through a variety of specified constraints such as charge and molecular weight.  
  
Create a new directory for the fragment library, use the command:
+
Create a new directory for the fragment library, using the command:
  
 
  mkdir 011_dn_focus
 
  mkdir 011_dn_focus
  
Create a new input file for fragment generation, use the command:
+
Create a new input file for small molecule generation, using the command:
 +
 
 +
vi dn_focus.in
  
touch dn_focus.in
+
Use the following parameters to answer the default questions from the dock program (Make sure to edit all appropriate paths):
  
Use the following parameters to answer default questions from the dock program:
 
 
  conformer_search_type                                        denovo
 
  conformer_search_type                                        denovo
 
  dn_fraglib_scaffold_file                                    ../010_dn_fraglib/fraglib_scaffold.mol2
 
  dn_fraglib_scaffold_file                                    ../010_dn_fraglib/fraglib_scaffold.mol2
Line 165: Line 166:
 
  flex_drive_file                                              /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl
 
  flex_drive_file                                              /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl
  
Once the fragment.in the file is generated, run the dock6 program using the fragment.in as the input file:
+
Once the fragment.in file is generated, run the dock6 program using fragment.in as the designated input file:
  
 
  dock6 -i dn_focus.in -o dn_focus.out
 
  dock6 -i dn_focus.in -o dn_focus.out
  
After the de novo docking is complete, 8 mol2 files and 1 sh file would be generated
+
After the de novo growth is complete, 8 .mol2 files and 1 .sh file will appear in the current directory.
  
 
= '''Focused Denovo Rescore''' =
 
= '''Focused Denovo Rescore''' =
This step is to rescore the focused denovo growth result.
+
Even though we've generated and visualized these fragments, we want to rescore them based on numerous properties for better in vitro modeling.
  
Create a new directory for the fragment library, use the command:
+
Create a new directory for the fragment library, using the command:
  
 
  mkdir 012_dn_focusrescore
 
  mkdir 012_dn_focusrescore
  
Create a new input file for fragment generation, use the command:
+
Create a new input file for fragment generation, using the command:
  
  touch rescore.in
+
  vi rescore.in
  
Use the following parameters to answer default questions from the dock program:
+
Use the following parameters to answer the default questions from the dock program:
  
 
  conformer_search_type                                        rigid
 
  conformer_search_type                                        rigid
Line 278: Line 279:
 
  rank_ligands                                                no
 
  rank_ligands                                                no
  
Once the rescore.in the file is generated, run the dock6 program using the rescore.in as the input file:
+
Once the rescore.in file is generated, run the dock6 program using rescore.in as the input file:
  
 
  dock6 -i rescore.in -o rescore.out
 
  dock6 -i rescore.in -o rescore.out
  
After the rescore complete, a footprint and H-bond scored txt files are generated. The descriptor scored mol2 files is also generated.
+
You may need to submit this as a slurm script depending on how long the job initially takes.
 +
 
 +
#!/bin/bash
 +
#SBATCH --time=48:00:00
 +
#SBATCH --nodes=1
 +
#SBATCH --ntasks=28
 +
#SBATCH --job-name=dn_rescore
 +
#SBATCH --output=dn_rescore.out
 +
#SBATCH -p long-28core
 +
 
 +
cd $SLURM_SUBMIT_DIR
 +
echo "starting Dock6.9 simulation"
 +
/gpfs/projects/AMS536/zzz.programs/dock6.9_release/bin/dock6.mpi -i dn_rescore.in -o dn_rescore.out
 +
 
 +
After the rescore is complete, footprint and H-bond scored txt files are generated. The descriptor scored .mol2 files should also appear in the current directory.
 +
 
 +
[[File:viewdock descriptor.png|center|500px]]
  
[[File:descriptor viewdock descriptor score.png]]
+
The rescored highest descriptor score ligand viewed in Chimera. Purple is the original ligand while Brown is the rescored ligand in the binding site.

Latest revision as of 23:42, 1 April 2021

In this session, we are going to use the predetermined structures from the virtual screen tutorial to do de novo design


I. Focused De Novo Design

In focused De Novo Design, we aim to generate a ligand that closely resembles Simvastatin in the binding pocket by connecting generated fragments from scratch. By putting the generated fragments back into the pocket through a variety of fragment assemblies, we can check how accurate simulation is in terms of the sampled ligand.



Fragment Libraries

First, a fragment library needs to be generated using the original ligand as the template. The generated fragments should build the same ligand seen in the crystalized structure.

Let us create a new directory for the fragment library, using the command:

mkdir 010_dn_fraglib

Create a new input file for fragment generation, using the command:

vi fragment.in

Use the following parameters to answer the default questions from the DOCK program (vi fragment.in, and place in the following parameters):

conformer_search_type                                        flex
write_fragment_libraries                                     yes
fragment_library_prefix                                      fraglib
fragment_library_freq_cutoff                                 1
fragment_library_sort_method                                 freq
fragment_library_trans_origin                                no
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
ligand_atom_file                                             ../001.structure/1HW9_ligand_with_H.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               no
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           ../002.surface_spheres/selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
bump_filter                                                  no
score_molecules                                              no
atom_model                                                   all
vdw_defn_file                                                /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/vdw_AMBER_parm99.defn
flex_defn_file                                               /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex.defn
flex_drive_file                                              /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl
ligand_outfile_prefix                                        fragment.out
write_orientations                                           no
num_scored_conformers                                        1
rank_ligands                                                 no

Once the fragment.in the file is generated, run the dock6 program using the fragment.in as the input file:

dock6 -i fragment.in -o fragment.out

After the fragment library generation is complete, 6 files shoulbe be seen in the current directory (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, and fraglib_torenv.dat)

Using the grep command, we can check the number of fragments generated. Copy the mol2 files to your local computer and open the files in Viewdock using Chimera. Chimera can visualize the fragments and show how well they match with the original crystallized ligand.

grep -wc MOLECULE *.mol2 | wc -l

Focused Denovo Growth

Next, we'll be using the fragments generated in the last step to build new small molecules for our system. The fragments will connect with each other through a variety of specified constraints such as charge and molecular weight.

Create a new directory for the fragment library, using the command:

mkdir 011_dn_focus

Create a new input file for small molecule generation, using the command:

vi dn_focus.in

Use the following parameters to answer the default questions from the dock program (Make sure to edit all appropriate paths):

conformer_search_type                                        denovo
dn_fraglib_scaffold_file                                     ../010_dn_fraglib/fraglib_scaffold.mol2
dn_fraglib_linker_file                                       ../010_dn_fraglib/fraglib_linker.mol2
dn_fraglib_sidechain_file                                    ../010_dn_fraglib/fraglib_sidechain.mol2
dn_user_specified_anchor                                     no
dn_use_torenv_table                                          yes
dn_torenv_table                                              ../010_dn_fraglib/fraglib_torenv.dat
dn_sampling_method                                           graph
dn_graph_max_picks                                           30
dn_graph_breadth                                             3
dn_graph_depth                                               2
dn_graph_temperature                                         100.0
dn_pruning_conformer_score_cutoff                            100.0
dn_pruning_conformer_score_scaling_factor                    1.0
dn_pruning_clustering_cutoff                                 100.0
dn_constraint_mol_wt                                         550.0
dn_constraint_rot_bon                                        15
dn_constraint_formal_charge                                  2.0
dn_heur_unmatched_num                                        1
dn_heur_matched_rmsd                                         2.0
dn_unique_anchors                                            1
dn_max_grow_layers                                           9
dn_max_root_size                                             25
dn_max_layer_size                                            25
dn_max_current_aps                                           5
dn_max_scaffolds_per_layer                                   1
dn_write_checkpoints                                         yes
dn_write_prune_dump                                          no
dn_write_orients                                             no
dn_write_growth_trees                                        no
dn_output_prefix                                             dn_focus.out
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           ../002.surface_spheres/selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
contact_score_secondary                                      no
grid_score_primary                                           yes
grid_score_secondary                                         no
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       ../003.gridbox/grid
multigrid_score_secondary                                    no
dock3.5_score_secondary                                      no
continuous_score_secondary                                   no
footprint_similarity_score_secondary                         no
pharmacophore_score_secondary                                no
descriptor_score_secondary                                   no
gbsa_zou_score_secondary                                     no
gbsa_hawkins_score_secondary                                 no
SASA_score_secondary                                         no
amber_score_secondary                                        no
minimize_ligand                                              yes
minimize_anchor                                              yes
minimize_flexible_growth                                     yes
use_advanced_simplex_parameters                              no
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_anchor_max_iterations                                500
simplex_grow_max_iterations                                  500
simplex_grow_tors_premin_iterations                          0
simplex_random_seed                                          0
simplex_restraint_min                                        no
atom_model                                                   all
vdw_defn_file                                                
/gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/vdw_AMBER_parm99.defn
flex_defn_file                                               /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex.defn
flex_drive_file                                              /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl

Once the fragment.in file is generated, run the dock6 program using fragment.in as the designated input file:

dock6 -i dn_focus.in -o dn_focus.out

After the de novo growth is complete, 8 .mol2 files and 1 .sh file will appear in the current directory.

Focused Denovo Rescore

Even though we've generated and visualized these fragments, we want to rescore them based on numerous properties for better in vitro modeling.

Create a new directory for the fragment library, using the command:

mkdir 012_dn_focusrescore

Create a new input file for fragment generation, using the command:

vi rescore.in

Use the following parameters to answer the default questions from the dock program:

conformer_search_type                                        rigid
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
ligand_atom_file                                             ../011.dn_focus/dn_focus.out.denovo_build.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               no
use_database_filter                                          no
orient_ligand                                                no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
contact_score_secondary                                      no
grid_score_primary                                           no
grid_score_secondary                                         no
multigrid_score_primary                                      no
multigrid_score_secondary                                    no
dock3.5_score_primary                                        no
dock3.5_score_secondary                                      no
continuous_score_primary                                     no
continuous_score_secondary                                   no
footprint_similarity_score_primary                           no
footprint_similarity_score_secondary                         no
pharmacophore_score_primary                                  no
pharmacophore_score_secondary                                no
descriptor_score_primary                                     yes
descriptor_score_secondary                                   no
descriptor_use_grid_score                                    no
descriptor_use_multigrid_score                               no
descriptor_use_continuous_score                              no
descriptor_use_footprint_similarity                          yes
descriptor_use_pharmacophore_score                           yes
descriptor_use_tanimoto                                      yes
descriptor_use_hungarian                                     yes
descriptor_use_volume_overlap                                yes
descriptor_fps_score_use_footprint_reference_mol2            yes
descriptor_fps_score_footprint_reference_mol2_filename       ../004.dock/1hw9_lig_min_scored.mol2
descriptor_fps_score_foot_compare_type                       Euclidean
descriptor_fps_score_normalize_foot                          no
descriptor_fps_score_foot_comp_all_residue                   yes
descriptor_fps_score_receptor_filename                       ../001.dockprep/1hw9_rec_prep.mol2
descriptor_fps_score_vdw_att_exp                             6
descriptor_fps_score_vdw_rep_exp                             12
descriptor_fps_score_vdw_rep_rad_scale                       1
descriptor_fps_score_use_distance_dependent_dielectric       yes
descriptor_fps_score_dielectric                              4.0
descriptor_fps_score_vdw_fp_scale                            1
descriptor_fps_score_es_fp_scale                             1
descriptor_fps_score_hb_fp_scale                             0
descriptor_fms_score_use_ref_mol2                            yes
descriptor_fms_score_ref_mol2_filename                       ../004.dock/1hw9_lig_min_scored.mol2
descriptor_fms_score_write_reference_pharmacophore_mol2      no
descriptor_fms_score_write_reference_pharmacophore_txt       no
descriptor_fms_score_write_candidate_pharmacophore           no
descriptor_fms_score_write_matched_pharmacophore             no
descriptor_fms_score_compare_type                            overlap
descriptor_fms_score_full_match                              yes
descriptor_fms_score_match_rate_weight                       5.0
descriptor_fms_score_match_dist_cutoff                       1.0
descriptor_fms_score_match_proj_cutoff                       0.7071
descriptor_fms_score_max_score                               20
descriptor_fingerprint_ref_filename                          ../004.dock/1hw9_lig_min_scored.mol2
descriptor_hms_score_ref_filename                            ../004.dock/1hw9_lig_min_scored.mol2
descriptor_hms_score_matching_coeff                          -5
descriptor_hms_score_rmsd_coeff                              1
descriptor_volume_score_reference_mol2_filename              ../04_dock/6UZW_lig_min_scored.mol2
descriptor_volume_score_overlap_compute_method               analytical
descriptor_weight_fps_score                                  1
descriptor_weight_pharmacophore_score                        1
descriptor_weight_fingerprint_tanimoto                       -1
descriptor_weight_hms_score                                  1
descriptor_weight_volume_overlap_score                       -1
gbsa_zou_score_secondary                                     no
gbsa_hawkins_score_secondary                                 no
SASA_score_secondary                                         no
amber_score_secondary                                        no
minimize_ligand                                              no
atom_model                                                   all
vdw_defn_file                                                
/gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/vdw_AMBER_parm99.defn
flex_defn_file                                               /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex.defn
flex_drive_file                                              /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl
chem_defn_file                                               /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/chem.defn
pharmacophore_defn_file                                       
/gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/ph4.defn
ligand_outfile_prefix                                        descriptor.output
write_footprints                                             yes
write_hbonds                                                 yes
write_orientations                                           no
num_scored_conformers                                        1
rank_ligands                                                 no

Once the rescore.in file is generated, run the dock6 program using rescore.in as the input file:

dock6 -i rescore.in -o rescore.out

You may need to submit this as a slurm script depending on how long the job initially takes.

#!/bin/bash
#SBATCH --time=48:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=28
#SBATCH --job-name=dn_rescore
#SBATCH --output=dn_rescore.out
#SBATCH -p long-28core
cd $SLURM_SUBMIT_DIR
echo "starting Dock6.9 simulation"
/gpfs/projects/AMS536/zzz.programs/dock6.9_release/bin/dock6.mpi -i dn_rescore.in -o dn_rescore.out

After the rescore is complete, footprint and H-bond scored txt files are generated. The descriptor scored .mol2 files should also appear in the current directory.

Viewdock descriptor.png

The rescored highest descriptor score ligand viewed in Chimera. Purple is the original ligand while Brown is the rescored ligand in the binding site.