Difference between revisions of "2022 Denovo tutorial 2 with PDBID 4ZUD"
Stonybrook (talk | contribs) |
Stonybrook (talk | contribs) |
||
Line 13: | Line 13: | ||
To create new molecules, we need to begin with the building blocks. For the purposes of speed, we most often use pre-defined molecular fragments that can be arranged/attached in a variety of orientations to create unique structures. Since we have the structure of a ligand that is known to bind the 4ZUD protein, we can generate fragments from that molecule to increase the probability of creating molecules with similar properties to the known ligand. | To create new molecules, we need to begin with the building blocks. For the purposes of speed, we most often use pre-defined molecular fragments that can be arranged/attached in a variety of orientations to create unique structures. Since we have the structure of a ligand that is known to bind the 4ZUD protein, we can generate fragments from that molecule to increase the probability of creating molecules with similar properties to the known ligand. | ||
+ | In an input file: | ||
+ | |||
+ | vim fragment.in | ||
+ | |||
+ | Insert the following: | ||
+ | |||
+ | conformer_search_type flex | ||
+ | write_fragment_libraries yes | ||
+ | fragment_library_prefix fraglib | ||
+ | fragment_library_freq_cutoff 1 | ||
+ | fragment_library_sort_method freq | ||
+ | fragment_library_trans_origin no | ||
+ | use_internal_energy yes | ||
+ | internal_energy_rep_exp 12 | ||
+ | internal_energy_cutoff 100.0 | ||
+ | ligand_atom_file ../001.structure/4ZUD_ligand_hydrogens.mol2 | ||
+ | limit_max_ligands no | ||
+ | skip_molecule no | ||
+ | read_mol_solvation no | ||
+ | calculate_rmsd no | ||
+ | use_database_filter no | ||
+ | orient_ligand yes | ||
+ | automated_matching yes | ||
+ | receptor_site_file ../002.surface_spheres/selected_spheres.sph | ||
+ | max_orientations 1000 | ||
+ | critical_points no | ||
+ | chemical_matching no | ||
+ | use_ligand_spheres no | ||
+ | bump_filter no | ||
+ | score_molecules no | ||
+ | atom_model all | ||
+ | vdw_defn_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/vdw_AMBER_parm99.defn | ||
+ | flex_defn_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex.defn | ||
+ | flex_drive_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl | ||
+ | ligand_outfile_prefix fragment.out | ||
+ | write_orientations no | ||
+ | num_scored_conformers 1 | ||
+ | rank_ligands no | ||
+ | |||
+ | Run the fragment generation with the following command: | ||
+ | |||
+ | dock6 -i fragment.in -o fragment.out | ||
+ | |||
+ | |||
+ | DOCK should generate '''six''' files; three of those files should be mol2's of linker, scaffold, and side chain fragments. You can extract the number of fragments present in each file by running: | ||
+ | |||
+ | grep -wc MOLECULE *.mol2 | ||
+ | |||
+ | [[File:4ZUD_minimized_lig_outline_&_scaffold|thumb|center|500px]] | ||
==='''Focused De Novo Growth'''=== | ==='''Focused De Novo Growth'''=== | ||
==='''Focused De Novo Rescored'''=== | ==='''Focused De Novo Rescored'''=== |
Revision as of 11:48, 28 February 2022
Contents
De Novo Design
De novo design refers to the process of generating novel ligands in an effort to identify molecules of physiological significance that can be further optimized to become approved drug molecules. The synthesis of thousands of potential drug molecules are done experimentally daily, but with computers, millions of molecules can be computationally modelled and pre-selected for possible synthesis in a fraction of the time it would take to test all possible molecules solely experimentally. With this, scientists are able to direct their attention towards molecules that have the highest probability of imparting a therapeutic effect upon binding to a respective receptor.
This tutorial is the second part of the 2022 DOCK tutorial 2 with PDBID 4ZUD tutorial. You will need the files created in that tutorial to continue with this one!
Make a new directory to organize the files generated in this tutorial:
mkdir 005.denovo
Fragment Library Generation
To create new molecules, we need to begin with the building blocks. For the purposes of speed, we most often use pre-defined molecular fragments that can be arranged/attached in a variety of orientations to create unique structures. Since we have the structure of a ligand that is known to bind the 4ZUD protein, we can generate fragments from that molecule to increase the probability of creating molecules with similar properties to the known ligand.
In an input file:
vim fragment.in
Insert the following:
conformer_search_type flex write_fragment_libraries yes fragment_library_prefix fraglib fragment_library_freq_cutoff 1 fragment_library_sort_method freq fragment_library_trans_origin no use_internal_energy yes internal_energy_rep_exp 12 internal_energy_cutoff 100.0 ligand_atom_file ../001.structure/4ZUD_ligand_hydrogens.mol2 limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand yes automated_matching yes receptor_site_file ../002.surface_spheres/selected_spheres.sph max_orientations 1000 critical_points no chemical_matching no use_ligand_spheres no bump_filter no score_molecules no atom_model all vdw_defn_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/vdw_AMBER_parm99.defn flex_defn_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex.defn flex_drive_file /gpfs/projects/AMS536/zzz.programs/dock6.9_release/parameters/flex_drive.tbl ligand_outfile_prefix fragment.out write_orientations no num_scored_conformers 1 rank_ligands no
Run the fragment generation with the following command:
dock6 -i fragment.in -o fragment.out
DOCK should generate six files; three of those files should be mol2's of linker, scaffold, and side chain fragments. You can extract the number of fragments present in each file by running:
grep -wc MOLECULE *.mol2