Difference between revisions of "2020 AMS-535 Fall"
(162 intermediate revisions by 4 users not shown) | |||
Line 5: | Line 5: | ||
! style="width:10%" | '''Instructor''' | ! style="width:10%" | '''Instructor''' | ||
| Dr. Robert C. Rizzo [631-632-8519, rizzorc -at- gmail.com] | | Dr. Robert C. Rizzo [631-632-8519, rizzorc -at- gmail.com] | ||
− | + | ||
− | + | Dr. Guilherme Duarte Ramos Matos [631-632-8519, guilherme dot duarteramosmatos -at- stonybrook dot edu] | |
− | |||
John Bickel [631-632-8519, john dot bickel -at- stonybrook dot edu] | John Bickel [631-632-8519, john dot bickel -at- stonybrook dot edu] | ||
Line 16: | Line 15: | ||
|- | |- | ||
| '''Office Hours''' || Anytime by appointment, Math Tower 3-129 | | '''Office Hours''' || Anytime by appointment, Math Tower 3-129 | ||
+ | |- | ||
+ | | '''Grading''' || Grades will be based on the quality of: <br> | ||
+ | |||
+ | (1) Pre-recorded oral presentations (25%) | ||
+ | ::Student will pre-record 2 ZOOM presentations based on 2 papers assigned from the schedule below <br> | ||
+ | (2) Class discussion (30%) | ||
+ | ::At scheduled class times students will be assigned into ZOOM breakout rooms and asked to discuss the papers they have read and the presentations they have watched <br> | ||
+ | (3) Take home quizzes (45%) | ||
+ | ::Five take home quizzes will be assigned based on the 5 major sections of the course and the lowest quiz grade will be dropped | ||
|- | |- | ||
|} | |} | ||
+ | <br> | ||
+ | '''GENERAL INFORMATION:''' AMS-535 provides an introduction to the field of computational structure-based drug design. The course aims to foster collaborative learning and will consist of presentations by instructors, course participants, and guest lecturers arranged in five major sections outlined below. Presentations should aim to summarize key papers, theory, and application of computational methods relevant to computational drug design. Grade will be based on class discussion/attendance, oral presentations, and quizzes. | ||
+ | |||
+ | |||
+ | '''Learning Objectives''' | ||
+ | *(1) Become informed about the field of computational structure-based drug design and the pros and cons. | ||
+ | *(2) Dissect seminal theory and application papers relevant to computational drug design. | ||
+ | *(3) Gain practice in giving an in-depth oral powerpoint presentation on computational drug design. | ||
+ | *(4) Read, participate in discussion, and be tested across five key subject areas: | ||
+ | **(i) Drug Discovery and Biomolecular Structure: <br />Drug Discovery, Chemistry Review, Proteins, Carbohydrates, Nucleic acids <br />Molecular Interactions and Recognition, Experimental Techniques for Elucidating Structure | ||
+ | **(ii) Molecular Modeling: <br />Classical Force Fields (Molecular Mechanics), <br />Solvent Models, Condensed-phase Calculations, Parameter Development | ||
+ | **(iii) Sampling Methods: <br />Conformational Space, Molecular Dynamics (MD), Metropolis Monte Carlo (MC) <br />Sampling Techniques, Predicting Protein Structure, Protein Folding | ||
+ | **(iv) Lead Discovery:<br />Docking as a Lead Generation Tool, Docking Algorithms<br />Discovery Methods I, Discovery Methods II, Applications | ||
+ | **(v) Lead Refinement:<br />Free Energy Perturbation (FEP), Linear Response (LR), Extended Linear Response (ELR)<br />MM-PBSA, MM-GBSA, Properties of Known Drugs, Property Prediction | ||
+ | |||
+ | |||
+ | '''LITERATURE DISCLAIMER:''' Hyperlinks and manuscripts accessed through Stony Brook University's electronic journal subscriptions are provided below for educational purposes only. | ||
+ | |||
+ | |||
+ | '''PRESENTATION DISCLAIMER:''' Presentations may contain slides from a variety of online sources for educational and illustrative purposes only, and use here does not imply that the presenter is claiming that the contents are their own original work or research. | ||
+ | |||
+ | |||
+ | == '''Online Syllabus Notes''' == | ||
+ | As a result of the COVID-19 outbreak this course is being offered online. This is a mixed course meaning that there will be both synchronous and asynchronous aspects. Note that course grading criteria has been modified from previous years (see grading breakdown above). Other details for this semester are as follows: | ||
+ | |||
+ | '''General Information:''' | ||
+ | *We will hold class at the regularly scheduled time (M/W 2:40-4:00PM) however this will be done online via [https://it.stonybrook.edu/services/zoom ZOOM]. | ||
+ | *The first 5 lectures are to help put everyone on an even footing with regards to background material and will be given by the Instructors at the regularly scheduled class time and will be made available on the class website. | ||
+ | *All class correspondence should be addressed to ALL course Instructors. | ||
+ | |||
+ | '''Discussion Sessions:''' | ||
+ | *The bulk of the classes will be devoted to Discussion of papers read prior to coming to class (2 per class) for which everyone will also have watched oral presentations prior to coming to class (2 per class). Oral presentations will be in the form of pre-recorded videos made by students taking the class. | ||
+ | *During the Discussion sessions (ZOOM breakout rooms) the Instructors will ask participants to explain details of the papers they have read which will form the basis of the "Discussion" part of their grade. Thus, it is important that everyone attend all of the synchronous classes. All students are expected to participate especially those whose papers are being discussed that day. Breakout room discussion will NOT be recorded. | ||
+ | *If a student is unable to attend an online class they will instead be asked to submit a one page [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020_ams.che535.paper.summary.docx Paper Summary Sheet] answering questions about the papers that were discussed on the day that they missed. The "Paper Summary Sheets" will form the basis of the "Discussion" part of their grade for any synchronous classes that were missed. | ||
+ | *If a students misses an online class they will have 24 hours to submit their Paper Summary Sheets. Late Paper Summary Sheets will not be accepted. | ||
+ | |||
+ | '''Oral Presentations:''' | ||
+ | *Students will pre-record 2 different ZOOM presentations based on 2 different papers from the schedule shown below. | ||
+ | *Students will email their pre-recorded presentations to ALL course Instructors by Friday at 5PM before the week in which their presentations will be discussed. | ||
+ | *Course participants will watch the student presentations before the class in which they are to be discussed. | ||
+ | *Course participants will score each student presentation using a [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020_ams.che535.presentation.assessment.docx Presentation Assessment Sheet] which will be emailed to ALL Instructors within 24 hours after the class in which the presentation were discussed. | ||
+ | |||
+ | '''Take home Quizzes:''' | ||
+ | *At the end of each of the five different sections of the course a take home quiz will be assigned. The "Quiz" portion of the grade will based on the four highest quiz scores attained. | ||
+ | *Although the Quiz format is open book, students are expected to work alone and do their own work. Representing another person's work as your own is always wrong. The Instructors are required to report any suspected instances of academic dishonesty to the Academic Judiciary. | ||
+ | *Students will have 24 hours to completed each Quiz. Late Quizzes will not be accepted. | ||
+ | *Quiz question answers should integrate topics, concepts, and outcomes of the different papers covered for the section being tested. | ||
+ | |||
+ | '''Recording Your Oral Presentations Using Zoom:''' It is very straightforward to create a video of yourself giving a PPT presentation using Zoom: | ||
+ | *Download the Zoom app ( https://it.stonybrook.edu/services/zoom ) | ||
+ | *Open the Zoom app | ||
+ | *Create a new Zoom meeting with only yourself (make sure audio and video are turned on) | ||
+ | *Share your screen | ||
+ | *Open your paper presentation in PPT and put in presentation mode | ||
+ | *Start recording and give a short test presentation to make sure that everything is working smoothly (use mouse as necessary to highlight specific regions of your slides) | ||
+ | *Stop recording and quit the meeting | ||
+ | *Open the newly created video (using QuickTime or some other video player) to make sure that your test presentation has both audio and video and looks good | ||
+ | *Follow the above steps to create your "full-length" video presentation (videos should not exceed 20-25 minutes) | ||
+ | *Email your video to ALL Instructors who will make it available to the class (please name your Zoom video Lastname_Paper1.mp4 or Lastname_Paper2.mp4 ) | ||
+ | |||
+ | '''Oral Presentation Guidelines:''' Pre-recorded talks should be formal (as if at a scientific meeting or job talk), presented in PPT format, and be 20-25 minutes long. All talks will be posted on the course website. References should occur at the bottom of each slide when necessary. Presentations should be based mostly on the primary references however secondary references and other sources may be required to make some presentations complete. It is the responsibility of each presenter to email their talk by Friday at 5PM before the week in which their talk is being discussed. Talks will likely be arranged in the following order: | ||
+ | |||
+ | *Introduction/Background (include biological relevance if applicable) | ||
+ | *Specifics of the System or General Problem | ||
+ | *Computational Methods (theory) and Details (system setup) being used | ||
+ | *Results and Discussion (critical interpretation of results and any problems/challenges) | ||
+ | *Conclusions/Future | ||
+ | *Acknowledgments | ||
+ | |||
+ | <br> | ||
<br> | <br> | ||
Line 29: | Line 107: | ||
|- | |- | ||
− | + | | <center>2020.08.24 Mon</center> | |
− | | <center> | ||
|| | || | ||
*''Organizational Meeting | *''Organizational Meeting | ||
− | || | + | ||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.24.ams535.rizzo.organizational.mp4 Rizzo, R. mp4] |
− | || | + | || Course introduction and format. Go over Syllabus. Course participant background and introductions. |
|| <center>-</center> | || <center>-</center> | ||
|- | |- | ||
− | + | | <center>2020.08.26 Wed</center> | |
− | | <center> | ||
|| | || | ||
'''SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE''' | '''SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE''' | ||
+ | *''Drug Discovery'' | ||
+ | :1. Introduction, history, irrational vs. rational | ||
+ | :2. Viral Target Examples | ||
− | + | || | |
− | + | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.26.ams535.rizzo.lect.001.mp4 Rizzo, R. mp4] | |
− | + | <br> | |
− | + | <br> | |
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.26.ams535.rizzo.lect.001.pdf Rizzo, R. pdf] | ||
|| | || | ||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8] | ||
Line 53: | Line 133: | ||
|| <center>-</center> | || <center>-</center> | ||
|- | |- | ||
− | | <center> | + | |
+ | | <center>2020.08.31 Mon</center> | ||
|| | || | ||
*''Chemistry Review'' | *''Chemistry Review'' | ||
− | + | :1. Molecular structure, bonding, graphical representations | |
− | + | :2. Functionality, properties of organic molecules | |
− | ||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | |
+ | || | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.31.ams535.rizzo.lect.002.mp4 Rizzo, R. mp4] | ||
+ | <br> | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.31.ams535.rizzo.lect.002.pdf Rizzo, R. pdf] | ||
|| <center>presentation</center> | || <center>presentation</center> | ||
|| <center>-</center> | || <center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.02 Wed</center> |
|| | || | ||
*''Biomolecular Structure'' | *''Biomolecular Structure'' | ||
− | + | :1. Lipids, carbohydrates | |
− | + | :2. Nucleic acids, proteins | |
− | ||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | |
+ | || | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.02.ams535.rizzo.lect.003.mp4 Rizzo, R. mp4] | ||
+ | <br> | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.02.ams535.rizzo.lect.003.pdf Rizzo, R. pdf] | ||
|| <center>presentation</center> | || <center>presentation</center> | ||
|| [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains] | || [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains] | ||
Line 74: | Line 165: | ||
|- style="background:peachpuff" | |- style="background:peachpuff" | ||
− | | <center> | + | | <center>2020.09.07 Mon</center> |
|| | || | ||
*''No Class: Labor Day'' | *''No Class: Labor Day'' | ||
Line 82: | Line 173: | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.09 Wed</center> |
|| | || | ||
*''Molecular Interactions and Recognition'' | *''Molecular Interactions and Recognition'' | ||
− | + | :1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy) | |
− | + | :2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive | |
− | ||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | || |
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.09.ams535.rizzo.lect.004.mp4 Rizzo, R. mp4] | ||
+ | <br> | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.09.ams535.rizzo.lect.004.pdf Rizzo, R. pdf] | ||
|| <center>presentation</center> | || <center>presentation</center> | ||
|| <center>-</center> | || <center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.14 Mon</center> |
|| | || | ||
*''Intro. to Methods in 3-D Structure Determination'' | *''Intro. to Methods in 3-D Structure Determination'' | ||
− | + | :1. Crystallography, NMR | |
− | + | :2. Structure Quality, PDB in detail | |
− | ||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | || |
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.14.ams535.rizzo.lect.005.mp4 Rizzo, R. mp4] | ||
+ | <br> | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.14.ams535.rizzo.lect.005.pdf Rizzo, R. pdf] | ||
|| <center>presentation</center> | || <center>presentation</center> | ||
|| <center>-</center> | || <center>-</center> | ||
|- | |- | ||
− | | <center> | + | |- style="background:lightgreen" |
+ | | <center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>'''Take home QUIZ for Section 1 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center> | ||
+ | ||<center>-</center> | ||
+ | |- | ||
+ | |||
+ | | <center>2020.09.16 Wed </center> | ||
|| | || | ||
− | |||
− | |||
'''SECTION II: MOLECULAR MODELING''' | '''SECTION II: MOLECULAR MODELING''' | ||
*''Classical Force Fields'' | *''Classical Force Fields'' | ||
− | + | :1. All-atom Molecular Mechanics | |
+ | :2. OPLS | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk01.mp4 Adams, Dexter mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk01.pdf pdf] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk02.mp4 Chang, Jamie mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk02.pdf pdf] | ||
+ | |||
|| | || | ||
+ | |||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Mackerell001.pdf Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. ''J. Comput. Chem.'' '''2004''', ''25'', 1584-604] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Mackerell001.pdf Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. ''J. Comput. Chem.'' '''2004''', ''25'', 1584-604] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen002.pdf Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. ''J. Am. Chem. Soc.'' '''1996''', ''118'', 11225-11236] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/vangunsteren003.pdf van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. ''Angew. Chem. Int. Ed. Engl.'' '''2006''', ''45'', 4064-92] | + | |
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/vangunsteren003.pdf van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. ''Angew. Chem. Int. Ed. Engl.'' '''2006''', ''45'', 4064-92] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen004.pdf Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. ''J. Am. Chem. Soc.'' '''1988''', ''110'', 1657-1671] | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.21 Mon</center> |
|| | || | ||
− | + | *''Classical Force Fields'' | |
− | + | :1. AMBER | |
+ | *''Explicit Solvent Models'' | ||
+ | :2. Water models (TIP3P, TIP4P, SPC) | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk01.mp4 Corbo, Chris mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk02.mp4 Chung, So Young mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman004.pdf Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. ''J. Am. Chem. Soc.'' '''1995''', ''117'', 5179-5197] | |
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen003.pdf Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. ''J. Chem. Phys.'' '''1983''', ''79'', 926-935] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman005.pdf Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. ''J. Phys. Chem.'' '''1993''', ''97'', 10269-10280] | |
|- | |- | ||
− | + | | <center>2020.09.23 Wed </center> | |
− | | <center> | ||
|| | || | ||
*''Explicit Solvent Models'' | *''Explicit Solvent Models'' | ||
− | + | :1. Condensed-phase calculations (DGhydration) | |
− | + | *''Continuum Solvent Models'' | |
+ | :2. Generalized Born Surface Area (GBSA) | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk01.mp4 Dovedytis, Matt mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk02.mp4 Foran, Chris mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen010.pdf Jorgensen, W. L.; et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. ''J. Chem. Phys.'' '''1985''', ''83'', 3050-3054] | |
− | ||<center>-</center> | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Still001.pdf Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. ''J. Am. Chem. Soc'' 1990, ''112'', 6127-6129] |
+ | || | ||
+ | <center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.28 Mon</center> |
|| | || | ||
*''Continuum Solvent Models'' | *''Continuum Solvent Models'' | ||
− | + | :1. Poisson-Boltzmann Surface Area (PBSA) | |
− | + | :2. Accuracy of partial atomic changes for GBSA and PBSA | |
− | |||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk01.mp4 Hall, Carole mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk02_2.mp4 Lang, Liam mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Honig001.pdf Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. ''J. Phys. Chem.'' '''1994''', ''98'', 1978-1988] |
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo011.pdf Rizzo, R. C.; et al., Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. ''J. Chem. Theory. Comput.'' '''2006''', ''2'', 128-139] |
+ | || | ||
+ | <center>-</center> | ||
+ | |- | ||
− | || | + | |- style="background:lightgreen" |
− | 1. and 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | | <center>-</center> |
+ | ||<center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>'''Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center> | ||
+ | ||<center>'''Additional resources:'''</center> | ||
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Duarte01.pdf Duarte Ramos Matos, G.; et al., Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. ''J. Chem. Eng. Data'' '''2017''', ''62'', 1559-1569] <br> | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Loeffler01.pdf Loeffler, H. H.; et al., Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages ''J. Chem. Theory Comput.'' '''2018''', ''14'', 5567−5582] | ||
|- | |- | ||
− | | <center> | + | | <center>2020.09.30 Wed </center> |
|| | || | ||
− | |||
− | |||
'''SECTION III: SAMPLING METHODS''' | '''SECTION III: SAMPLING METHODS''' | ||
− | *''Molecular | + | *''Molecular Conformations'' |
− | + | :1. Small molecules, peptides, relative energy, minimization methods | |
+ | *''Sampling Methods for Large Simulations'' | ||
+ | :2. Molecular dynamics (MD) | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk01.mp4 Mingione, Victoria mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk01.pdf pdf] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk02.mp4 Palmeri, Chris mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk02.pdf pdf] | ||
|| | || | ||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman011.pdf Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. ''J. Med. Chem.'' '''1988''', ''31'', 1669-75] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman011.pdf Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. ''J. Med. Chem.'' '''1988''', ''31'', 1669-75] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Petsko001.pdf Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. ''Nature'' '''1990''', ''347'', 631-9] | ||
|| | || | ||
Line 200: | Line 348: | ||
|- | |- | ||
− | | <center> | + | | <center>2020.10.05 Mon </center> |
|| | || | ||
− | *'' | + | *''Sampling Methods for Large Simulations'' |
− | + | :1. Monte Carlo (MC) | |
− | + | *''Predicting Protein Structure'' | |
+ | :2. Ab initio structure prediction (protein-folding) | ||
+ | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk01.mp4 Pasumarthy, Sishir mp4] | |
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | <br> |
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk02.mp4 Quispe-Carbajal, Mariella mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Luke001.pdf Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.] |
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen007.pdf Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. ''J. Phys. Chem.'' '''1996''', ''100'',14508-14513] | |
− | |||
− | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Dill001.pdf Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. ''Nat. Struct. Biol.'' '''1997''', ''4'', 10-19] | ||
|| | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Metropolis001.pdf Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. ''The Journal of Chemical Physics'' '''1953''', ''21'', 1087-1092] | |
|- | |- | ||
− | | <center> | + | | <center>2020.10.07 Wed </center> |
|| | || | ||
− | *''Predicting Protein Structure | + | *''Predicting Protein Structure'' |
− | + | :1. Example Trp-cage | |
− | + | :2. Comparative (homology) modeling | |
+ | || | ||
+ | |||
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk01.mov Rajesh, Chandana mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk02.mp4 Rangwala, Aziz mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Simmerling002.pdf Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. ''J. Am. Chem. Soc.'' '''2002''', ''124'',11258-9] | |
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali001.pdf Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. ''Annu. Rev. Biophys. Biomol. Struct.'' '''2000''',''29'',291-325] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Fersht001.pdf Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. ''Nat. Rev. Mol. Cell Biol.'' '''2003''', ''4'', 497-502] | |
− | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali002.pdf Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. ''Acc. Chem. Res.'' '''2002''', ''35'', 413-21] | |
− | |||
|- | |- | ||
− | | <center> | + | | <center>2020.10.12 Mon</center> |
|| | || | ||
− | *''Predicting Protein Structure | + | *''Predicting Protein Structure'' |
− | + | :1. Case studies (CASP) | |
− | + | :2. Accelerated MD for Blind Protein Prediction | |
− | |||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk01.mp4 Sadatrezaei, Golbahar mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk02.mp4 Steier, Joshua mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult002.pdf Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. ''Curr. Opin. Struct. Biol.'' '''2005''',''15'', 285-9] | |
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Dill002.pdf Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. ''Sci. Adv.'' '''2016''', ''2''] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult003.pdf Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. ''Proteins'' '''2005''', ''61 Suppl 7'', 225-36] | |
|- | |- | ||
+ | | <center>2020.10.14 Wed</center> | ||
+ | || | ||
+ | *''Predicting Protein Structure'' | ||
+ | :1. MD x-ray refinement | ||
+ | :2. Protein Design | ||
+ | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk01.mp4 Contorno, Shaymus mp4] | |
− | + | <br> | |
− | + | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk01.pdf pdf] | |
− | |||
− | |||
− | |||
− | |||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk02.mp4 He, Yongle mp4 ] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk02.pdf pdf ] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger001.pdf Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. ''Acc. Chem. Res.'' '''2002''', ''35'', 404-12] |
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Baker001.pdf Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. ''Science'' '''2003''', ''302'', 1364-1368] |
|| | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger004.pdf Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. ''Acta Crystallogr D Biol Crystallogr'' '''1999''', ''55'', 181-90] | |
+ | |- | ||
+ | |- style="background:lightgreen" | ||
+ | | <center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>'''Take home QUIZ for Section 3 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center> | ||
+ | ||<center>-</center> | ||
|- | |- | ||
− | + | | <center>2020.10.19 Mon </center> | |
− | | <center> | ||
|| | || | ||
− | |||
− | |||
− | |||
'''SECTION IV: LEAD DISCOVERY''' | '''SECTION IV: LEAD DISCOVERY''' | ||
− | *''Docking | + | *''Docking'' |
− | + | :1. Introduction to DOCK | |
+ | :2. Test Sets (pose reproduction) | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk01.mp4 Hetherington, Caitlin mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk02.mp4 Koller, Angus mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk02.pdf pdf] | ||
|| | || | ||
+ | |||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo014.pdf Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. ''J. Comput. Aided Mol. Des.'' '''2006''', ''20'', 601-619] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo014.pdf Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. ''J. Comput. Aided Mol. Des.'' '''2006''', ''20'', 601-619] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo021.pdf Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. ''J. Chem. Info. Model.'' '''2010''', ''50'', 1986-2000] | ||
|| | || | ||
+ | |||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kuntz002.pdf Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. ''J. Comput. Aided Mol. Des.'' '''2001''', ''15'', 411-28] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kuntz002.pdf Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. ''J. Comput. Aided Mol. Des.'' '''2001''', ''15'', 411-28] | ||
+ | |||
+ | 2. [http://www.ccdc.cam.ac.uk/products/life_sciences/gold/validation/astex/ The CCDC/Astex Test Set] | ||
|- | |- | ||
− | | <center> | + | | <center>2020.10.21 Wed</center> |
|| | || | ||
− | *''Docking | + | *''Docking'' |
− | + | :1. Test Sets (virtual screening) | |
− | + | :2. Test Sets (database enrichment) | |
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk01.mp4 Pak, Steven mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk01.pdf pdf] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk02.mp4 Adams, Dexter mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk02.pdf pdf] | ||
+ | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Shoichet001.pdf Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. ''J. Chem. Inf. Model.'' '''2005''', ''45'', 177-82] | |
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Shoichet002.pdf Huang, N.; et al., Benchmarking Sets for Molecular Docking. ''J. Med. Chem.'' '''2006''', ''49(23)'', 6789-6801] |
|| | || | ||
− | |||
− | + | 1. [http://zinc.docking.org ZINC Website at UCSF, Shoichet group] | |
|- | |- | ||
− | | <center> | + | | <center>2020.10.26 Mon</center> |
|| | || | ||
− | *''Docking | + | *''Docking'' |
− | + | :1. Footprint-based scoring | |
− | + | *''Discovery Methods'' | |
+ | :2. Hotspot probes (GRID) | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk01.mp4 Chang, Jaime mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk02.mp4 Corbo, Chris mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | 1 | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo022.pdf Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. ''J. Comput. Chem.'' '''2011''', ''32'', 2273-2289.] |
− | |||
− | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Goodford001.pdf Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. ''J. Med. Chem.'' '''1985''', ''28'', 849-57] | ||
|| | || | ||
<center>-</center> | <center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.10.28 Wed</center> |
|| | || | ||
− | *''Discovery Methods | + | *''Discovery Methods'' |
− | + | :1. COMFA | |
− | + | :2 Pharmacophores | |
− | |||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk01.mp4 Chung, So Young mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk02.mp4 Dovedytis, Matt mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kubinyi002.pdf Kubinyi, H., Comparative molecular field analysis (CoMFA). ''Encyclopedia of Computational Chemistry, Databases and Expert Systems Section'', John Wiley & Sons, Ltd. '''1998'''] | |
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Swaan001.pdf Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. ''Advanced Drug Delivery Reviews'' '''2006''', ''58'', 1431-1450] | ||
|| | || | ||
Line 372: | Line 562: | ||
|- | |- | ||
− | | <center> | + | | <center>2020.11.02 Mon</center> |
|| | || | ||
− | *''Discovery Methods | + | *''Discovery Methods.'' |
− | + | :1. Pharmacophores | |
− | + | :2. De novo design | |
− | |||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk01.mp4 Foran, Chris mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk02.mp4 Hall, Carole mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Alvarez001.pdf Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. ''Proteins'' '''2003''', ''51'', 172-188 ] | |
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Shakhnovich001.pdf Cheron, N.; et al., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. ''J. Med. Chem.'' '''2016''', ''59'', 4171-4188] | ||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.11.04 Wed</center> |
|| | || | ||
− | *''Discovery Methods | + | *''Discovery Methods'' |
− | + | :1. De novo design | |
− | + | :2. Genetic Algorithm | |
|| | || | ||
− | 1. | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk01.mp4 Lang, Liam mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk01.pdf pdf] | ||
− | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk02.mp4 Mingione, Victoria mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk02.pdf pdf] | ||
+ | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen016.pdf Jorgensen, W.; et al., Efficient drug lead discovery and optimization. ''Acc. of Chem. Research'' '''2009''', ''42 (6)'', 724-733] | |
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | ||
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Pegg001.pdf Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. ''J Comput Aided Mol Des'' '''2001''', ''15'', 911-33] | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Pegg001.pdf Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. ''J Comput Aided Mol Des'' '''2001''', ''15'', 911-33] | ||
+ | ||<center>-</center> | ||
+ | |- | ||
+ | |- style="background:lightgreen" | ||
+ | | <center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>-</center> | ||
+ | ||<center>'''Take home QUIZ for Section 4 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center> | ||
||<center>-</center> | ||<center>-</center> | ||
− | |||
|- | |- | ||
− | | <center> | + | | <center>2020.11.09 Mon</center> |
|| | || | ||
− | |||
'''SECTION V: LEAD REFINEMENT | '''SECTION V: LEAD REFINEMENT | ||
− | *''Free Energy | + | *''Free Energy Methods'' |
− | + | :1. Thermolysin with two ligands (FEP) | |
+ | :2. Fatty acid synthase I ligands (TI) | ||
+ | || | ||
+ | |||
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk01.mp4 Palmeri, Chris mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk01.pdf pdf] | ||
− | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk02.mp4 Pasumarthy, Sishir mp4] | |
− | + | <br> | |
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk02.pdf pdf] | ||
|| | || | ||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman009.pdf Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. ''Science'' '''1987''', ''235'', 574-6] | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman009.pdf Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. ''Science'' '''1987''', ''235'', 574-6] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/labahn001.pdf Labahn, A.; et al., Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. ''Bioorg Med Chem.'' '''2012''', ''20'', 3446-53] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen006.pdf Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. ''Accounts Chem. Res.'' '''1989''', ''22'', 184-189] | + | 1&2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen006.pdf Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. ''Accounts Chem. Res.'' '''1989''', ''22'', 184-189] |
+ | |||
+ | 1&2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman007.pdf Kollman, P., Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. ''Chem. Rev.'' '''1993''', ''93'', 2395-2417] | ||
− | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Lawrenz001.pdf Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. ''J. Chem. Theory Comput.'' '''2009''', ''5'', 1106-1116] | |
|- | |- | ||
− | | <center> | + | | <center>2020.11.11 Wed</center> |
|| | || | ||
− | + | ||
*'' MM-PB/GBSA'' | *'' MM-PB/GBSA'' | ||
− | + | :1. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods | |
− | + | *''MM-GBSA case studies'' | |
+ | :2. EGFR and mutants | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk01.mp4 Quispe-Carbajal, Mariella mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk02.mp4 Rajesh, Chandana mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk02.pdf pdf] | ||
+ | || | ||
− | |||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Kollman012.pdf Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. ''Accounts Chem. Res.'' '''2000''', ''33'', 889-897] | |
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo019.pdf Balius, T.E.; Rizzo, R. C. Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. ''Biochemistry'', '''2009''', ''48'', 8435-8448] | ||
|| | || | ||
− | + | ||
|- | |- | ||
− | | <center> | + | | <center>2020.11.16 Mon </center> |
|| | || | ||
*''MM-GBSA case studies'' | *''MM-GBSA case studies'' | ||
− | + | :1. ErbB family selectivity | |
− | + | *''Linear Response'' | |
+ | :2. Intro to Linear Response (LR method) | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk01.mp4 Rangwala, Aziz mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk02.mp4 Sadatrezaei, Golbahar mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | + | ||
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo024.pdf Huang, Y.; Rizzo, R. C. A Water-based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, ''Biochemistry'', '''2012''', ''51'', 2390-2406] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Aqvist001.pdf Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. ''J Biol Chem'' '''1995''', ''270'', 9978-81] | ||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.11.18 Wed </center> |
|| | || | ||
*''Linear Response'' | *''Linear Response'' | ||
− | + | :1. Inhibition of protein kinases (Extended LR method) | |
− | + | *''Properties of Known Drugs'' | |
+ | :2. Molecular Scaffolds (frameworks) and functionality (side-chains | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk01.mp4 Steier, Joshua mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk02.mp4 Contorno, Shaymus mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk02.pdf pdf] | ||
+ | || | ||
− | |||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen001.pdf Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. ''J. Med. Chem.'' '''2004''', ''47'', 2534-2549] | |
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Murcko001.pdf Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. ''J. Med. Chem.'' '''1996''', ''39'', 2887-93] | ||
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Murcko002.pdf Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. ''J. Med. Chem.'' '''1999''', ''42'', 5095-9] | ||
||<center>-</center> | ||<center>-</center> | ||
Line 490: | Line 723: | ||
|- style="background:peachpuff" | |- style="background:peachpuff" | ||
− | | <center> | + | | <center>2020.11.23 Mon</center> |
|| | || | ||
*''No Class: Thanksgiving'' | *''No Class: Thanksgiving'' | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
− | |||
|- style="background:peachpuff" | |- style="background:peachpuff" | ||
− | | <center> | + | | <center>2020.11.25 Wed</center> |
|| | || | ||
*''No Class: Thanksgiving'' | *''No Class: Thanksgiving'' | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
+ | | <center>2020.11.30 Mon </center> | ||
+ | || | ||
+ | *''Properties of Known Drugs'' | ||
+ | :1. Lipinski Rule of Five | ||
+ | :2 ADME Prediction | ||
+ | || | ||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk01.mp4 He, Yongle mp4] | |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk01.pdf pdf] | ||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk02.mp4 Hetherington, Caitlin mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | |||
− | |||
− | |||
− | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Lipinski002.pdf Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. ''Adv. Drug. Deliv. Rev.'' '''2001''', ''46'', 3-26] | |
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/ | ||
− | |||
− | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Xu001.pdf Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. ''J. Mol. Model'', '''2002''', ''8'', 337-349] | ||
|| | || | ||
− | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Lipinski001.pdf Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. ''Drug. Discov. Today'' '''2003''', ''8'', 12-6] |
− | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Xu003.pdf Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. ''J. Chem. Inf. Comput. Sci.'', '''2003''', ''43'', 2137-2152] | |
+ | |- | ||
+ | |- | ||
+ | | <center>2020.12.02 Wed </center> | ||
+ | || | ||
+ | *''Properties of Known Drugs'' | ||
+ | :1. Synthetic Accessibility | ||
+ | :2. QED | ||
+ | || | ||
+ | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk01.mp4 Koller, Angus mp4] | ||
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk01.pdf pdf] | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/ | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk02.mp4 Pak, Steve mp4] |
+ | <br> | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk02.pdf pdf] | ||
|| | || | ||
− | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/ | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Ertl2009.pdf Ertl, P.; Schuffenhauer, A.; Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. ''J. Cheminformatics'', '''2009''', ''1'', 8] |
+ | |||
+ | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Bickerton2012.pdf Bickerton, G. R., Quantifying the chemical beauty of drugs. ''Nature Chemistry'' '''2012''', ''4'', 90-98] | ||
+ | ||<center>-</center> | ||
|- | |- | ||
− | | <center> | + | | <center>2020.12.07 Mon </center> |
|| | || | ||
− | * | + | *Course Wrap up |
+ | ||<center>[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.ams535_thermo_cycles_study_guide.pdf Thermodynamic Cycles] | ||
+ | [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.ams535.course_topic_wrapup.pdf Course Wrap-Up Topics] | ||
+ | </center> | ||
||<center>-</center> | ||<center>-</center> | ||
− | |||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
− | | <center> | + | |- style="background:lightgreen" |
− | || | + | | <center>-</center> |
− | + | ||<center>-</center> | |
||<center>-</center> | ||<center>-</center> | ||
− | || | + | ||<center>'''Take home QUIZ for Section 5 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center> |
− | |||
− | |||
||<center>-</center> | ||<center>-</center> | ||
|- | |- | ||
Line 564: | Line 812: | ||
|- | |- | ||
|} | |} | ||
+ | |||
+ | == '''Required Syllabi Statements:''' == | ||
+ | The University Senate Undergraduate and Graduate Councils have authorized that the following required statements appear in all teaching syllabi (graduate and undergraduate courses) on the Stony Brook Campus.. This information is also located on the Provost’s website: https://www.stonybrook.edu/commcms/provost/faculty/handbook/academic_policies/syllabus_statement.php | ||
+ | |||
+ | |||
+ | '''Student Accessibility Support Center Statement:''' If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, 128 ECC Building, (631) 632-6748, or at sasc@stonybrook.edu. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and the Student Accessibility Support Center. For procedures and information go to the following website: https://ehs.stonybrook.edu/programs/fire-safety/emergency-evacuation/evacuation-guide-people-physical-disabilities and search Fire Safety and Evacuation and Disabilities. | ||
+ | |||
+ | |||
+ | '''Academic Integrity Statement:''' Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html | ||
+ | |||
+ | |||
+ | '''Critical Incident Management:''' Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook. |
Latest revision as of 18:17, 8 September 2021
Please see http://ringo.ams.sunysb.edu/~rizzo for Rizzo Group Homepage
Instructor | Dr. Robert C. Rizzo [631-632-8519, rizzorc -at- gmail.com]
Dr. Guilherme Duarte Ramos Matos [631-632-8519, guilherme dot duarteramosmatos -at- stonybrook dot edu] John Bickel [631-632-8519, john dot bickel -at- stonybrook dot edu] |
---|---|
Course No. | AMS-535 / CHE-535 |
Location/Time | Online, Monday and Wednesday 2:40PM - 4:00PM |
Office Hours | Anytime by appointment, Math Tower 3-129 |
Grading | Grades will be based on the quality of: (1) Pre-recorded oral presentations (25%)
(2) Class discussion (30%)
(3) Take home quizzes (45%)
|
GENERAL INFORMATION: AMS-535 provides an introduction to the field of computational structure-based drug design. The course aims to foster collaborative learning and will consist of presentations by instructors, course participants, and guest lecturers arranged in five major sections outlined below. Presentations should aim to summarize key papers, theory, and application of computational methods relevant to computational drug design. Grade will be based on class discussion/attendance, oral presentations, and quizzes.
Learning Objectives
- (1) Become informed about the field of computational structure-based drug design and the pros and cons.
- (2) Dissect seminal theory and application papers relevant to computational drug design.
- (3) Gain practice in giving an in-depth oral powerpoint presentation on computational drug design.
- (4) Read, participate in discussion, and be tested across five key subject areas:
- (i) Drug Discovery and Biomolecular Structure:
Drug Discovery, Chemistry Review, Proteins, Carbohydrates, Nucleic acids
Molecular Interactions and Recognition, Experimental Techniques for Elucidating Structure - (ii) Molecular Modeling:
Classical Force Fields (Molecular Mechanics),
Solvent Models, Condensed-phase Calculations, Parameter Development - (iii) Sampling Methods:
Conformational Space, Molecular Dynamics (MD), Metropolis Monte Carlo (MC)
Sampling Techniques, Predicting Protein Structure, Protein Folding - (iv) Lead Discovery:
Docking as a Lead Generation Tool, Docking Algorithms
Discovery Methods I, Discovery Methods II, Applications - (v) Lead Refinement:
Free Energy Perturbation (FEP), Linear Response (LR), Extended Linear Response (ELR)
MM-PBSA, MM-GBSA, Properties of Known Drugs, Property Prediction
- (i) Drug Discovery and Biomolecular Structure:
LITERATURE DISCLAIMER: Hyperlinks and manuscripts accessed through Stony Brook University's electronic journal subscriptions are provided below for educational purposes only.
PRESENTATION DISCLAIMER: Presentations may contain slides from a variety of online sources for educational and illustrative purposes only, and use here does not imply that the presenter is claiming that the contents are their own original work or research.
Online Syllabus Notes
As a result of the COVID-19 outbreak this course is being offered online. This is a mixed course meaning that there will be both synchronous and asynchronous aspects. Note that course grading criteria has been modified from previous years (see grading breakdown above). Other details for this semester are as follows:
General Information:
- We will hold class at the regularly scheduled time (M/W 2:40-4:00PM) however this will be done online via ZOOM.
- The first 5 lectures are to help put everyone on an even footing with regards to background material and will be given by the Instructors at the regularly scheduled class time and will be made available on the class website.
- All class correspondence should be addressed to ALL course Instructors.
Discussion Sessions:
- The bulk of the classes will be devoted to Discussion of papers read prior to coming to class (2 per class) for which everyone will also have watched oral presentations prior to coming to class (2 per class). Oral presentations will be in the form of pre-recorded videos made by students taking the class.
- During the Discussion sessions (ZOOM breakout rooms) the Instructors will ask participants to explain details of the papers they have read which will form the basis of the "Discussion" part of their grade. Thus, it is important that everyone attend all of the synchronous classes. All students are expected to participate especially those whose papers are being discussed that day. Breakout room discussion will NOT be recorded.
- If a student is unable to attend an online class they will instead be asked to submit a one page Paper Summary Sheet answering questions about the papers that were discussed on the day that they missed. The "Paper Summary Sheets" will form the basis of the "Discussion" part of their grade for any synchronous classes that were missed.
- If a students misses an online class they will have 24 hours to submit their Paper Summary Sheets. Late Paper Summary Sheets will not be accepted.
Oral Presentations:
- Students will pre-record 2 different ZOOM presentations based on 2 different papers from the schedule shown below.
- Students will email their pre-recorded presentations to ALL course Instructors by Friday at 5PM before the week in which their presentations will be discussed.
- Course participants will watch the student presentations before the class in which they are to be discussed.
- Course participants will score each student presentation using a Presentation Assessment Sheet which will be emailed to ALL Instructors within 24 hours after the class in which the presentation were discussed.
Take home Quizzes:
- At the end of each of the five different sections of the course a take home quiz will be assigned. The "Quiz" portion of the grade will based on the four highest quiz scores attained.
- Although the Quiz format is open book, students are expected to work alone and do their own work. Representing another person's work as your own is always wrong. The Instructors are required to report any suspected instances of academic dishonesty to the Academic Judiciary.
- Students will have 24 hours to completed each Quiz. Late Quizzes will not be accepted.
- Quiz question answers should integrate topics, concepts, and outcomes of the different papers covered for the section being tested.
Recording Your Oral Presentations Using Zoom: It is very straightforward to create a video of yourself giving a PPT presentation using Zoom:
- Download the Zoom app ( https://it.stonybrook.edu/services/zoom )
- Open the Zoom app
- Create a new Zoom meeting with only yourself (make sure audio and video are turned on)
- Share your screen
- Open your paper presentation in PPT and put in presentation mode
- Start recording and give a short test presentation to make sure that everything is working smoothly (use mouse as necessary to highlight specific regions of your slides)
- Stop recording and quit the meeting
- Open the newly created video (using QuickTime or some other video player) to make sure that your test presentation has both audio and video and looks good
- Follow the above steps to create your "full-length" video presentation (videos should not exceed 20-25 minutes)
- Email your video to ALL Instructors who will make it available to the class (please name your Zoom video Lastname_Paper1.mp4 or Lastname_Paper2.mp4 )
Oral Presentation Guidelines: Pre-recorded talks should be formal (as if at a scientific meeting or job talk), presented in PPT format, and be 20-25 minutes long. All talks will be posted on the course website. References should occur at the bottom of each slide when necessary. Presentations should be based mostly on the primary references however secondary references and other sources may be required to make some presentations complete. It is the responsibility of each presenter to email their talk by Friday at 5PM before the week in which their talk is being discussed. Talks will likely be arranged in the following order:
- Introduction/Background (include biological relevance if applicable)
- Specifics of the System or General Problem
- Computational Methods (theory) and Details (system setup) being used
- Results and Discussion (critical interpretation of results and any problems/challenges)
- Conclusions/Future
- Acknowledgments
|
|
|
|
|
|
|
Rizzo, R. mp4 | Course introduction and format. Go over Syllabus. Course participant background and introductions. | |
|
SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
|
1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8 2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082 |
| |
|
|
|
| |
|
|
|
structures of the 20 amino acid side chains | |
|
|
|||
|
|
|
| |
|
|
|
| |
|
||||
|
SECTION II: MOLECULAR MODELING
|
|||
|
|
|||
|
|
| ||
|
|
| ||
|
1. Duarte Ramos Matos, G.; et al., Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 2017, 62, 1559-1569 | |||
|
SECTION III: SAMPLING METHODS
|
2. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9 |
||
|
|
1. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B. 2. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19 |
||
|
|
|||
|
|
|||
|
|
|||
|
||||
|
SECTION IV: LEAD DISCOVERY
|
|||
|
|
2. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801 |
||
|
|
| ||
|
|
|||
|
|
|||
|
|
|||
|
||||
|
SECTION V: LEAD REFINEMENT
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349 |
||
|
|
2. Bickerton, G. R., Quantifying the chemical beauty of drugs. Nature Chemistry 2012, 4, 90-98 |
||
|
|
|||
|
||||
|
No Final Exam in AMS-535/CHE-535 for Fall 2020 |
Required Syllabi Statements:
The University Senate Undergraduate and Graduate Councils have authorized that the following required statements appear in all teaching syllabi (graduate and undergraduate courses) on the Stony Brook Campus.. This information is also located on the Provost’s website: https://www.stonybrook.edu/commcms/provost/faculty/handbook/academic_policies/syllabus_statement.php
Student Accessibility Support Center Statement: If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, 128 ECC Building, (631) 632-6748, or at sasc@stonybrook.edu. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and the Student Accessibility Support Center. For procedures and information go to the following website: https://ehs.stonybrook.edu/programs/fire-safety/emergency-evacuation/evacuation-guide-people-physical-disabilities and search Fire Safety and Evacuation and Disabilities.
Academic Integrity Statement: Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html
Critical Incident Management: Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook.