Difference between revisions of "2020 AMS-535 Fall"

From Rizzo_Lab
Jump to: navigation, search
 
(70 intermediate revisions by 4 users not shown)
Line 7: Line 7:
  
 
Dr. Guilherme Duarte Ramos Matos [631-632-8519, guilherme dot duarteramosmatos -at- stonybrook dot edu]
 
Dr. Guilherme Duarte Ramos Matos [631-632-8519, guilherme dot duarteramosmatos -at- stonybrook dot edu]
|-
+
 
|'''TA'''
+
John Bickel  [631-632-8519, john dot bickel -at- stonybrook dot edu]  
| John Bickel  [631-632-8519, john dot bickel -at- stonybrook dot edu]  
 
 
|-
 
|-
 
| '''Course No.''' || AMS-535  / CHE-535
 
| '''Course No.''' || AMS-535  / CHE-535
Line 18: Line 17:
 
|-
 
|-
 
| '''Grading''' ||  Grades will be based on the quality of: <br>
 
| '''Grading''' ||  Grades will be based on the quality of: <br>
(1) attendance, participation in class discussion, wiki tutorial construction, assisting others (25%) <br>
+
 
(2) oral presentations (25%) <br>
+
(1) Pre-recorded oral presentations (25%)
(3) final written report (50%)
+
::Student will pre-record 2 ZOOM presentations based on 2 papers assigned from the schedule below <br>
 +
(2) Class discussion (30%)
 +
::At scheduled class times students will be assigned into ZOOM breakout rooms and asked to discuss the papers they have read and the presentations they have watched <br>
 +
(3) Take home quizzes (45%)
 +
::Five take home quizzes will be assigned based on the 5 major sections of the course and the lowest quiz grade will be dropped
 
|-
 
|-
 
|}
 
|}
 +
<br>
 +
'''GENERAL INFORMATION:''' AMS-535 provides an introduction to the field of computational structure-based drug design. The course aims to foster collaborative learning and will consist of presentations by instructors, course participants, and guest lecturers arranged in five major sections outlined below. Presentations should aim to summarize key papers, theory, and application of computational methods relevant to computational drug design. Grade will be based on class discussion/attendance, oral presentations, and quizzes.
 +
  
== Online Syllabus Notes ==
+
'''Learning Objectives'''
As a result of the COVID-19 outbreak this course is being offered online. It is a mixed course in that it there are both synchronous and asynchronous aspects. A summary of these changes include:
+
*(1) Become informed about the field of computational structure-based drug design and the pros and cons. 
 +
*(2) Dissect seminal theory and application papers relevant to computational drug design. 
 +
*(3) Gain practice in giving an in-depth oral powerpoint presentation on computational drug design.  
 +
*(4) Read, participate in discussion, and be tested across five key subject areas:
 +
**(i) Drug Discovery and Biomolecular Structure: <br />Drug Discovery, Chemistry Review, Proteins, Carbohydrates, Nucleic acids <br />Molecular Interactions and Recognition, Experimental Techniques for Elucidating Structure
 +
**(ii) Molecular Modeling: <br />Classical Force Fields (Molecular Mechanics),  <br />Solvent Models, Condensed-phase Calculations, Parameter Development
 +
**(iii) Sampling Methods: <br />Conformational Space, Molecular Dynamics (MD), Metropolis Monte Carlo (MC) <br />Sampling Techniques, Predicting Protein Structure, Protein Folding
 +
**(iv) Lead Discovery:<br />Docking as a Lead Generation Tool, Docking Algorithms<br />Discovery Methods I, Discovery Methods II, Applications
 +
**(v) Lead Refinement:<br />Free Energy Perturbation (FEP), Linear Response (LR), Extended Linear Response (ELR)<br />MM-PBSA, MM-GBSA, Properties of Known Drugs, Property Prediction
  
<br>(0) The course grading criteria has been modified (see grading breakdown above).
 
<br>(1) The schedule has been revised starting March 23 2020.
 
<br>(2) We will continue to hold class at the regularly scheduled time however this will now be done online via the Zoom program ( https://it.stonybrook.edu/services/zoom ).
 
<br>(3) AMBER tutorials are being prerecorded by the Instructors and will be uploaded as appropriate into the course schedule as online videos.
 
<br>(4) AMBER tutorials should be viewed online before each relevant Zoom meetings so that meeting time can be spent troubleshooting and providing other guidance as necessary for class tutorials.
 
<br>(5) Class time normally devoted to watching and evaluating Oral Presentations will instead be used for Zoom meetings devoted to troubleshooting and providing other guidance as necessary for Class Projects.
 
<br>(6) Oral Presentations of Class Projects will be recorded by each participant individually (see Recording Your Oral Presentation Using Zoom section below), at home, and then emailed to the Instructors (see Video Presentation due date below).
 
<br>(7) Oral Presentations of Class Projects will be evaluated by 3 course participants and a [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020_ams.536.presentation.assessment.docx Presentation Assessment Sheet] for each talk evaluated will be submitted based on the Reviewer Assignments outlined below.
 
<br>(8) The Student Accessibility Support Center Statement (see below) has been updated
 
<br>(9) A Faculty Technical Support Statement (see below) has been added
 
  
 +
'''LITERATURE DISCLAIMER:''' Hyperlinks and manuscripts accessed through Stony Brook University's electronic journal subscriptions are provided below for educational purposes only.
 +
 +
 +
'''PRESENTATION DISCLAIMER:''' Presentations may contain slides from a variety of online sources for educational and illustrative purposes only, and use here does not imply that the presenter is claiming that the contents are their own original work or research.
 +
 +
 +
== '''Online Syllabus Notes''' ==
 +
As a result of the COVID-19 outbreak this course is being offered online. This is a mixed course meaning that there will be both synchronous and asynchronous aspects. Note that course grading criteria has been modified from previous years (see grading breakdown above). Other details for this semester are as follows:
 +
 +
'''General Information:'''
 +
*We will hold class at the regularly scheduled time (M/W 2:40-4:00PM) however this will be done online via [https://it.stonybrook.edu/services/zoom ZOOM].
 +
*The first 5 lectures are to help put everyone on an even footing with regards to background material and will be given by the Instructors at the regularly scheduled class time and will be made available on the class website.
 +
*All class correspondence should be addressed to ALL course Instructors.
 +
 +
'''Discussion Sessions:'''
 +
*The bulk of the classes will be devoted to Discussion of papers read prior to coming to class (2 per class) for which everyone will also have watched oral presentations prior to coming to class (2 per class). Oral presentations will be in the form of pre-recorded videos made by students taking the class.
 +
*During the Discussion sessions (ZOOM breakout rooms) the Instructors will ask participants to explain details of the papers they have read which will form the basis of the "Discussion" part of their grade. Thus, it is important that everyone attend all of the synchronous classes. All students are expected to participate especially those whose papers are being discussed that day. Breakout room discussion will NOT be recorded. 
 +
*If a student is unable to attend an online class they will instead be asked to submit a one page  [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020_ams.che535.paper.summary.docx Paper Summary Sheet] answering questions about the papers that were discussed on the day that they missed. The "Paper Summary Sheets" will form the basis of the "Discussion" part of their grade for any synchronous classes that were missed.
 +
*If a students misses an online class they will have 24 hours to submit their Paper Summary Sheets. Late Paper Summary Sheets will not be accepted.
 +
 +
'''Oral Presentations:'''
 +
*Students will pre-record 2 different ZOOM presentations based on 2 different papers from the schedule shown below.
 +
*Students will email their pre-recorded presentations to ALL course Instructors by Friday at 5PM before the week in which their presentations will be discussed.
 +
*Course participants will watch the student presentations before the class in which they are to be discussed.
 +
*Course participants will score each student presentation using a [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020_ams.che535.presentation.assessment.docx Presentation Assessment Sheet] which will be emailed to ALL Instructors within 24 hours after the class in which the presentation were discussed.
 +
 +
'''Take home Quizzes:'''
 +
*At the end of each of the five different sections of the course a take home quiz will be assigned.  The "Quiz" portion of the grade will based on the four highest quiz scores attained.
 +
*Although the Quiz format is open book, students are expected to work alone and do their own work. Representing another person's work as your own is always wrong. The Instructors are required to report any suspected instances of academic dishonesty to the Academic Judiciary. 
 +
*Students will have 24 hours to completed each Quiz. Late Quizzes will not be accepted.
 +
*Quiz question answers should integrate topics, concepts, and outcomes of the different papers covered for the section being tested.
  
 
'''Recording Your Oral Presentations Using Zoom:''' It is very straightforward to create a video of yourself giving a PPT presentation using Zoom:
 
'''Recording Your Oral Presentations Using Zoom:''' It is very straightforward to create a video of yourself giving a PPT presentation using Zoom:
 
 
*Download the Zoom app ( https://it.stonybrook.edu/services/zoom )
 
*Download the Zoom app ( https://it.stonybrook.edu/services/zoom )
 
*Open the Zoom app
 
*Open the Zoom app
 
*Create a new Zoom meeting with only yourself (make sure audio and video are turned on)
 
*Create a new Zoom meeting with only yourself (make sure audio and video are turned on)
 
*Share your screen
 
*Share your screen
*Open your presentation in PPT and put in presentation mode
+
*Open your paper presentation in PPT and put in presentation mode
 
*Start recording and give a short test presentation to make sure that everything is working smoothly (use mouse as necessary to highlight specific regions of your slides)
 
*Start recording and give a short test presentation to make sure that everything is working smoothly (use mouse as necessary to highlight specific regions of your slides)
 
*Stop recording and quit the meeting  
 
*Stop recording and quit the meeting  
 
*Open the newly created video (using QuickTime or some other video player) to make sure that your test presentation has both audio and video and looks good
 
*Open the newly created video (using QuickTime or some other video player) to make sure that your test presentation has both audio and video and looks good
*Follow the above steps to create your "full-length" video presentation (videos should not exceed 20 minutes)
+
*Follow the above steps to create your "full-length" video presentation (videos should not exceed 20-25 minutes)
*Email your video to the Instructors who will make it available to the class (please name your Zoom video Lastname.mp4)
+
*Email your video to ALL Instructors who will make it available to the class (please name your Zoom video Lastname_Paper1.mp4 or Lastname_Paper2.mp4 )
  
 +
'''Oral Presentation Guidelines:''' Pre-recorded talks should be formal (as if at a scientific meeting or job talk), presented in PPT format, and be 20-25 minutes long. All talks will be posted on the course website. References should occur at the bottom of each slide when necessary. Presentations should be based mostly on the primary references however secondary references and other sources may be required to make some presentations complete. It is the responsibility of each presenter to email their talk by Friday at 5PM before the week in which their talk is being discussed. Talks will likely be arranged in the following order:
  
'''Oral Presentation Guidelines:''' These meetings should be formal and your chance to tell a complete story. Talks should be presented in PPT format and be between 20 and 30 minutes long. The purpose of your talks is for you to clearly and concisely present your overall progress to date including appropriate background material and interpretation of your results. Check our guidelines on [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Projects/how_not_to_make_a_presentation.pdf how not to make a presentation]. Talks should be arranged in the following order:
+
*Introduction/Background (include biological relevance if applicable)
*Introduction/Background (include biological relevance)
+
*Specifics of the System or General Problem
*Specifics of Your System
+
*Computational Methods (theory) and Details (system setup) being used
*Computational Details (theory)  
+
*Results and Discussion (critical interpretation of results and any problems/challenges)
*Computational Details (system setup)  
+
*Conclusions/Future
*Results and Discussion (include a critical interpretation of your results)
 
*Conclusions  
 
*Future  
 
 
*Acknowledgments
 
*Acknowledgments
  
 +
<br>
 +
<br>
  
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:white; text-align:left; width:95%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:white; text-align:left; width:95%"
Line 73: Line 107:
 
|-
 
|-
  
| <center>2019.08.24 Mon</center>
+
| <center>2020.08.24 Mon</center>
 
||  
 
||  
 
*''Organizational Meeting
 
*''Organizational Meeting
|| <center>-</center>
+
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.24.ams535.rizzo.organizational.mp4 Rizzo, R. mp4]
|| <center>-</center>
+
|| Course introduction and format.  Go over Syllabus.  Course participant background and introductions.
 
|| <center>-</center>
 
|| <center>-</center>
 
|-
 
|-
  
| <center>2019.08.26 Wed</center>
+
| <center>2020.08.26 Wed</center>
 
||
 
||
 
'''SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE'''
 
'''SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE'''
Line 88: Line 122:
 
:2. Viral Target Examples
 
:2. Viral Target Examples
  
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.08.28.ams535.rizzo.lect.001.pdf Rizzo, R.]
+
||
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.26.ams535.rizzo.lect.001.mp4 Rizzo, R. mp4]
 +
<br>
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.26.ams535.rizzo.lect.001.pdf Rizzo, R. pdf]
 
||
 
||
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8]
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8]
Line 96: Line 134:
 
|-
 
|-
  
| <center>2019.08.31 Mon</center>
+
| <center>2020.08.31 Mon</center>
 
||  
 
||  
 
*''Chemistry Review''
 
*''Chemistry Review''
Line 102: Line 140:
 
:2. Functionality, properties of organic molecules  
 
:2. Functionality, properties of organic molecules  
  
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.04.ams535.rizzo.lect.002.pdf Rizzo, R.]
+
||
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.31.ams535.rizzo.lect.002.mp4 Rizzo, R. mp4]
 +
<br>
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.08.31.ams535.rizzo.lect.002.pdf Rizzo, R. pdf]
 
|| <center>presentation</center>
 
|| <center>presentation</center>
 
|| <center>-</center>
 
|| <center>-</center>
 
|-
 
|-
  
| <center>2019.09.02 Wed</center>
+
| <center>2020.09.02 Wed</center>
 
||  
 
||  
 
*''Biomolecular Structure''
 
*''Biomolecular Structure''
Line 113: Line 155:
 
:2. Nucleic acids, proteins   
 
:2. Nucleic acids, proteins   
  
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.9.ams535.rizzo.lect.003.pdf Rizzo, R.]
+
||
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.02.ams535.rizzo.lect.003.mp4 Rizzo, R. mp4]
 +
<br>
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.02.ams535.rizzo.lect.003.pdf Rizzo, R. pdf]
 
|| <center>presentation</center>
 
|| <center>presentation</center>
 
|| [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains]
 
|| [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains]
Line 119: Line 165:
  
 
|- style="background:peachpuff"
 
|- style="background:peachpuff"
| <center>2019.09.07 Mon</center>
+
| <center>2020.09.07 Mon</center>
 
||  
 
||  
 
*''No Class: Labor Day''
 
*''No Class: Labor Day''
Line 127: Line 173:
 
|-
 
|-
  
| <center>2019.09.09 Wed</center>
+
| <center>2020.09.09 Wed</center>
 
||  
 
||  
 
*''Molecular Interactions and Recognition''
 
*''Molecular Interactions and Recognition''
 
:1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
 
:1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
 
:2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive   
 
:2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive   
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.11.ams535.rizzo.lect.004.pdf Rizzo, R.]
+
||
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.09.ams535.rizzo.lect.004.mp4 Rizzo, R. mp4]
 +
<br>
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.09.ams535.rizzo.lect.004.pdf Rizzo, R. pdf]
 
|| <center>presentation</center>
 
|| <center>presentation</center>
 
|| <center>-</center>
 
|| <center>-</center>
 
|-
 
|-
  
| <center>2019.09.14 Mon</center>
+
| <center>2020.09.14 Mon</center>
 
||  
 
||  
 
*''Intro. to Methods in 3-D Structure Determination''
 
*''Intro. to Methods in 3-D Structure Determination''
 
:1. Crystallography, NMR  
 
:1. Crystallography, NMR  
 
:2. Structure Quality, PDB in detail  
 
:2. Structure Quality, PDB in detail  
||[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.16.ams535.rizzo.lect.005.pdf Rizzo, R.]
+
||
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.14.ams535.rizzo.lect.005.mp4 Rizzo, R. mp4]
 +
<br>
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.14.ams535.rizzo.lect.005.pdf Rizzo, R. pdf]
 
|| <center>presentation</center>
 
|| <center>presentation</center>
 
|| <center>-</center>
 
|| <center>-</center>
Line 155: Line 209:
 
|-
 
|-
  
| <center>2019.09.16 Wed </center>
+
| <center>2020.09.16 Wed </center>
 
||
 
||
 
'''SECTION II: MOLECULAR MODELING'''
 
'''SECTION II: MOLECULAR MODELING'''
Line 163: Line 217:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.18.AMS535.talk01.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk01.mp4 Adams, Dexter mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk01.pdf pdf]
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk02.mp4 Chang, Jamie mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.16.AMS535.talk02.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.23.AMS535.talk01.pdf last, first  ]
 
 
||
 
||
  
Line 178: Line 237:
 
|-
 
|-
  
| <center>2019.09.21 Mon</center>
+
| <center>2020.09.21 Mon</center>
 
||  
 
||  
 
*''Classical Force Fields''
 
*''Classical Force Fields''
Line 186: Line 245:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.23.AMS535.talk02.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk01.mp4 Corbo, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.25.AMS535.talk01.pdf  last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk02.mp4 Chung, So Young mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.21.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 199: Line 262:
 
|-
 
|-
  
| <center>2019.09.23 Wed </center>
+
| <center>2020.09.23 Wed </center>
 
||  
 
||  
 
*''Explicit Solvent Models''
 
*''Explicit Solvent Models''
Line 207: Line 270:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.25.AMS535.talk01.pdf  last, first ]  
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk01.mp4  Dovedytis, Matt mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk01.pdf   pdf]
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk02.mp4 Foran, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.23.AMS535.talk02.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.30.AMS535.talk01.pdf  last, first  ]
 
 
||
 
||
  
Line 219: Line 287:
 
|-
 
|-
 
   
 
   
| <center>2019.09.28 Mon</center>
+
| <center>2020.09.28 Mon</center>
 
||  
 
||  
 
*''Continuum Solvent Models''
 
*''Continuum Solvent Models''
Line 226: Line 294:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.30.AMS535.talk01.pdf  last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk01.mp4  Hall, Carole mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.09.30.AMS535.talk02.pdf  last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk02_2.mp4  Lang, Liam mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.28.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 243: Line 315:
 
||<center>-</center>
 
||<center>-</center>
 
||<center>'''Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center>
 
||<center>'''Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)'''</center>
||<center>-</center>
+
||<center>'''Additional resources:'''</center>
 +
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Duarte01.pdf Duarte Ramos Matos, G.; et al., Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. ''J. Chem. Eng. Data'' '''2017''', ''62'', 1559-1569] <br>
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Loeffler01.pdf Loeffler, H. H.; et al., Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages ''J. Chem. Theory Comput.'' '''2018''', ''14'', 5567−5582]
 
|-
 
|-
  
| <center>2019.09.30 Wed </center>
+
| <center>2020.09.30 Wed </center>
 
||
 
||
 
'''SECTION III: SAMPLING METHODS'''
 
'''SECTION III: SAMPLING METHODS'''
Line 255: Line 329:
  
 
||
 
||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.02.AMS535.talk01.pdf last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk01.mp4 Mingione, Victoria mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.07.AMS535.talk01.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk02.mp4 Palmeri, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.09.30.AMS535.talk02.pdf  pdf]
  
 
||
 
||
Line 270: Line 348:
 
|-
 
|-
  
| <center>2019.10.05 Mon </center>
+
| <center>2020.10.05 Mon </center>
 
||  
 
||  
 
*''Sampling Methods for Large Simulations''
 
*''Sampling Methods for Large Simulations''
Line 278: Line 356:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.07.AMS535.talk01.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk01.mp4 Pasumarthy, Sishir mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.09.AMS535.talk02.pdf  last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk02.mp4 Quispe-Carbajal, Mariella mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.05.AMS535.talk02.pdf  pdf]
  
 
||
 
||
Line 293: Line 375:
 
|-
 
|-
  
| <center>2019.10.07 Wed </center>
+
| <center>2020.10.07 Wed </center>
 
||  
 
||  
 
*''Predicting Protein Structure''
 
*''Predicting Protein Structure''
Line 300: Line 382:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.09.AMS535.talk02.pdf last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk01.mov Rajesh, Chandana mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.16.AMS535.talk02.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk02.mp4  Rangwala, Aziz mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.07.AMS535.talk02.pdf   pdf]
 
||
 
||
  
Line 315: Line 401:
 
|-
 
|-
  
| <center>2019.10.12 Mon</center>
+
| <center>2020.10.12 Mon</center>
 
||  
 
||  
 
*''Predicting Protein Structure''  
 
*''Predicting Protein Structure''  
Line 321: Line 407:
 
:2. Accelerated MD for Blind Protein Prediction  
 
:2. Accelerated MD for Blind Protein Prediction  
 
||
 
||
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.16.AMS535.talk01.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk01.mp4 Sadatrezaei, Golbahar mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk01.pdf   pdf]
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk02.mp4 Steier, Joshua mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.12.AMS535.talk02.pdf pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk02.pdf last, first  ]
 
 
||
 
||
  
Line 334: Line 425:
 
|-
 
|-
  
| <center>2019.10.14 Wed</center>
+
| <center>2020.10.14 Wed</center>
 
||  
 
||  
 
*''Predicting Protein Structure''
 
*''Predicting Protein Structure''
Line 341: Line 432:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk01.pdf last, first   ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk01.mp4 Contorno, Shaymus mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk01.pdf pdf]
 +
 
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk02.mp4 He, Yongle mp4 ]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.14.AMS535.talk02.pdf   pdf ]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk01.pdf last, first  ]
 
 
||
 
||
  
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger001.pdf Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. ''Acc. Chem. Res.'' '''2002''', ''35'', 404-12]
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger001.pdf Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. ''Acc. Chem. Res.'' '''2002''', ''35'', 404-12]
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Baker001.pdf Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. ''Science'' '''2003''', ''302'', 1364-1368]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Baker001.pdf Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. ''Science'' '''2003''', ''302'', 1364-1368]
 
||
 
||
  
Line 362: Line 459:
 
|-
 
|-
  
| <center>2019.10.19 Mon </center>
+
| <center>2020.10.19 Mon </center>
 
||
 
||
 
'''SECTION IV: LEAD DISCOVERY'''
 
'''SECTION IV: LEAD DISCOVERY'''
Line 370: Line 467:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.23.AMS535.talk01.pdf last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk01.mp4 Hetherington, Caitlin mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk01.pdf   pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.28.AMS535.talk01.pdf last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk02.mp4 Koller, Angus mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.19.AMS535.talk02.pdf   pdf]
 
||
 
||
  
Line 385: Line 486:
 
|-
 
|-
  
| <center>2019.10.21 Wed</center>
+
| <center>2020.10.21 Wed</center>
 
||
 
||
 
*''Docking''  
 
*''Docking''  
Line 393: Line 494:
 
||
 
||
 
   
 
   
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.28.AMS535.talk02.pdf last, first  ]  
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk01.mp4 Pak, Steven mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk01.pdf   pdf]  
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.30.AMS535.talk01.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk02.mp4 Adams, Dexter mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.21.AMS535.talk02.pdf   pdf]
 
||
 
||
  
Line 408: Line 513:
 
|-
 
|-
  
| <center>2019.10.26 Mon</center>
+
| <center>2020.10.26 Mon</center>
 
||  
 
||  
 
*''Docking''
 
*''Docking''
Line 416: Line 521:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.30.AMS535.talk02.pdf last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk01.mp4 Chang, Jaime mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk01.pdf   pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.04.AMS535.talk01.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk02.mp4 Corbo, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.26.AMS535.talk02.pdf pdf]
  
 
||
 
||
Line 424: Line 533:
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo022.pdf Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. ''J. Comput. Chem.'' '''2011''', ''32'', 2273-2289.]
 
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/rizzo022.pdf Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. ''J. Comput. Chem.'' '''2011''', ''32'', 2273-2289.]
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Goodford001.pdf Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. ''J. Med. Chem.'' '''1985''', ''28'', 849-57]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Goodford001.pdf Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. ''J. Med. Chem.'' '''1985''', ''28'', 849-57]
 
||
 
||
 
<center>-</center>
 
<center>-</center>
 
|-
 
|-
  
| <center>2019.10.28 Wed</center>
+
| <center>2020.10.28 Wed</center>
 
||  
 
||  
 
*''Discovery Methods''  
 
*''Discovery Methods''  
Line 436: Line 545:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.04.AMS535.talk02.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk01.mp4 Chung, So Young mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.06.AMS535.talk01.pdf  last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk02.mp4 Dovedytis, Matt mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.10.28.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 449: Line 562:
 
|-
 
|-
  
| <center>2019.11.02 Mon</center>
+
| <center>2020.11.02 Mon</center>
 
||
 
||
 
*''Discovery Methods.''  
 
*''Discovery Methods.''  
Line 456: Line 569:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.06.AMS535.talk02.pdf  last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk01.mp4 Foran, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.06.AMS535.talk02.pdf  last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk02.mp4 Hall, Carole mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.02.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 467: Line 584:
 
|-
 
|-
  
| <center>2019.11.04 Wed</center>
+
| <center>2020.11.04 Wed</center>
 
||  
 
||  
 
*''Discovery Methods''  
 
*''Discovery Methods''  
Line 474: Line 591:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.11.AMS535.talk01.pdf  last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk01.mp4 Lang, Liam mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.11.AMS535.talk01.pdf  last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk02.mp4 Mingione, Victoria mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.04.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 493: Line 614:
 
|-
 
|-
  
| <center>2019.11.09 Mon</center>
+
| <center>2020.11.09 Mon</center>
 
||
 
||
 
'''SECTION V: LEAD REFINEMENT
 
'''SECTION V: LEAD REFINEMENT
Line 501: Line 622:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.13.AMS535.talk01.pdf last, first  ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk01.mp4 Palmeri, Chris mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.13.AMS535.talk01.pdf last, first  ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk02.mp4 Pasumarthy, Sishir mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.09.AMS535.talk02.pdf  pdf]
  
 
||
 
||
Line 518: Line 643:
 
|-
 
|-
  
| <center>2019.11.11 Wed</center>
+
| <center>2020.11.11 Wed</center>
 
||  
 
||  
  
Line 527: Line 652:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.18.AMS535.talk01.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk01.mp4 Quispe-Carbajal, Mariella mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.18.AMS535.talk02.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk02.mp4 Rajesh, Chandana mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.11.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 540: Line 669:
 
|-
 
|-
  
| <center>2019.11.16 Mon </center>
+
| <center>2020.11.16 Mon </center>
 
||  
 
||  
 
*''MM-GBSA case studies''
 
*''MM-GBSA case studies''
Line 548: Line 677:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.20.AMS535.talk01.pdf last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk01.mp4 Rangwala, Aziz mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk01.pdf pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.20.AMS535.talk02.pdf last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk02.mp4 Sadatrezaei, Golbahar mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.16.AMS535.talk02.pdf pdf]
  
 
||
 
||
Line 562: Line 695:
 
|-
 
|-
  
| <center>2019.11.18 Wed </center>
+
| <center>2020.11.18 Wed </center>
 
||  
 
||  
 
*''Linear Response''  
 
*''Linear Response''  
Line 570: Line 703:
 
||
 
||
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.25.AMS535.talk01.pdf  last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk01.mp4  Steier, Joshua mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.11.25.AMS535.talk02.pdf  last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk02.mp4  Contorno, Shaymus mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.18.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 586: Line 723:
  
 
|- style="background:peachpuff"
 
|- style="background:peachpuff"
| <center>2019.11.23 Mon</center>
+
| <center>2020.11.23 Mon</center>
 
||  
 
||  
 
*''No Class: Thanksgiving''
 
*''No Class: Thanksgiving''
Line 594: Line 731:
 
|-
 
|-
 
|- style="background:peachpuff"
 
|- style="background:peachpuff"
| <center>2019.11.23 Wed</center>
+
| <center>2020.11.25 Wed</center>
 
||  
 
||  
 
*''No Class: Thanksgiving''
 
*''No Class: Thanksgiving''
Line 602: Line 739:
 
|-
 
|-
  
| <center>2019.11.30 Mon </center>
+
| <center>2020.11.30 Mon </center>
 
||
 
||
 
*''Properties of Known Drugs''
 
*''Properties of Known Drugs''
Line 609: Line 746:
 
||  
 
||  
  
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.12.02.AMS535.talk01.pdf  last, first ]
+
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk01.mp4  He, Yongle mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk01.pdf  pdf]
  
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.12.02.AMS535.talk02.pdf  last, first ]
+
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk02.mp4  Hetherington, Caitlin mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.AMS535.talk02.pdf  pdf]
 
||
 
||
  
Line 625: Line 766:
 
|-
 
|-
  
| <center>2019.12.02 Wed </center>
+
| <center>2020.12.02 Wed </center>
 
||  
 
||  
*'' TBD''
+
*''Properties of Known Drugs''
||<center>-</center>
+
:1. Synthetic Accessibility
||<center>-</center>
+
:2. QED
 +
||
 +
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk01.mp4  Koller, Angus mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk01.pdf  pdf]
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk02.mp4  Pak, Steve mp4]
 +
<br>
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.12.02.AMS535.talk02.pdf  pdf]
 +
||
 +
1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Ertl2009.pdf Ertl, P.; Schuffenhauer, A.; Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. ''J. Cheminformatics'', '''2009''', ''1'', 8]
 +
 
 +
2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Bickerton2012.pdf Bickerton, G. R., Quantifying the chemical beauty of drugs. ''Nature Chemistry'' '''2012''', ''4'', 90-98]
 
||<center>-</center>
 
||<center>-</center>
 
|-
 
|-
  
| <center>2019.12.07 Mon </center>
+
| <center>2020.12.07 Mon </center>
 
||  
 
||  
*'' TBD''
+
*Course Wrap up
||<center>-</center>
+
||<center>[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.ams535_thermo_cycles_study_guide.pdf Thermodynamic Cycles]
 +
[http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2020.11.30.ams535.course_topic_wrapup.pdf Course Wrap-Up Topics]
 +
</center>
 
||<center>-</center>
 
||<center>-</center>
 
||<center>-</center>
 
||<center>-</center>
Line 657: Line 812:
 
|-
 
|-
 
|}
 
|}
 +
 +
== '''Required Syllabi Statements:''' ==
 +
The University Senate Undergraduate and Graduate Councils have authorized that the following required statements appear in all teaching syllabi (graduate and undergraduate courses) on the Stony Brook Campus.. This information is also located on the Provost’s website: https://www.stonybrook.edu/commcms/provost/faculty/handbook/academic_policies/syllabus_statement.php
 +
 +
 +
'''Student Accessibility Support Center Statement:''' If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, 128 ECC Building, (631) 632-6748, or at sasc@stonybrook.edu. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and the Student Accessibility Support Center. For procedures and information go to the following website: https://ehs.stonybrook.edu/programs/fire-safety/emergency-evacuation/evacuation-guide-people-physical-disabilities  and search Fire Safety and Evacuation and Disabilities.
 +
 +
 +
'''Academic Integrity Statement:''' Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html
 +
 +
 +
'''Critical Incident Management:''' Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook.

Latest revision as of 18:17, 8 September 2021

Please see http://ringo.ams.sunysb.edu/~rizzo for Rizzo Group Homepage


Instructor Dr. Robert C. Rizzo [631-632-8519, rizzorc -at- gmail.com]

Dr. Guilherme Duarte Ramos Matos [631-632-8519, guilherme dot duarteramosmatos -at- stonybrook dot edu]

John Bickel [631-632-8519, john dot bickel -at- stonybrook dot edu]

Course No. AMS-535 / CHE-535
Location/Time Online, Monday and Wednesday 2:40PM - 4:00PM
Office Hours Anytime by appointment, Math Tower 3-129
Grading Grades will be based on the quality of:

(1) Pre-recorded oral presentations (25%)

Student will pre-record 2 ZOOM presentations based on 2 papers assigned from the schedule below

(2) Class discussion (30%)

At scheduled class times students will be assigned into ZOOM breakout rooms and asked to discuss the papers they have read and the presentations they have watched

(3) Take home quizzes (45%)

Five take home quizzes will be assigned based on the 5 major sections of the course and the lowest quiz grade will be dropped


GENERAL INFORMATION: AMS-535 provides an introduction to the field of computational structure-based drug design. The course aims to foster collaborative learning and will consist of presentations by instructors, course participants, and guest lecturers arranged in five major sections outlined below. Presentations should aim to summarize key papers, theory, and application of computational methods relevant to computational drug design. Grade will be based on class discussion/attendance, oral presentations, and quizzes.


Learning Objectives

  • (1) Become informed about the field of computational structure-based drug design and the pros and cons.
  • (2) Dissect seminal theory and application papers relevant to computational drug design.
  • (3) Gain practice in giving an in-depth oral powerpoint presentation on computational drug design.
  • (4) Read, participate in discussion, and be tested across five key subject areas:
    • (i) Drug Discovery and Biomolecular Structure:
      Drug Discovery, Chemistry Review, Proteins, Carbohydrates, Nucleic acids
      Molecular Interactions and Recognition, Experimental Techniques for Elucidating Structure
    • (ii) Molecular Modeling:
      Classical Force Fields (Molecular Mechanics),
      Solvent Models, Condensed-phase Calculations, Parameter Development
    • (iii) Sampling Methods:
      Conformational Space, Molecular Dynamics (MD), Metropolis Monte Carlo (MC)
      Sampling Techniques, Predicting Protein Structure, Protein Folding
    • (iv) Lead Discovery:
      Docking as a Lead Generation Tool, Docking Algorithms
      Discovery Methods I, Discovery Methods II, Applications
    • (v) Lead Refinement:
      Free Energy Perturbation (FEP), Linear Response (LR), Extended Linear Response (ELR)
      MM-PBSA, MM-GBSA, Properties of Known Drugs, Property Prediction


LITERATURE DISCLAIMER: Hyperlinks and manuscripts accessed through Stony Brook University's electronic journal subscriptions are provided below for educational purposes only.


PRESENTATION DISCLAIMER: Presentations may contain slides from a variety of online sources for educational and illustrative purposes only, and use here does not imply that the presenter is claiming that the contents are their own original work or research.


Online Syllabus Notes

As a result of the COVID-19 outbreak this course is being offered online. This is a mixed course meaning that there will be both synchronous and asynchronous aspects. Note that course grading criteria has been modified from previous years (see grading breakdown above). Other details for this semester are as follows:

General Information:

  • We will hold class at the regularly scheduled time (M/W 2:40-4:00PM) however this will be done online via ZOOM.
  • The first 5 lectures are to help put everyone on an even footing with regards to background material and will be given by the Instructors at the regularly scheduled class time and will be made available on the class website.
  • All class correspondence should be addressed to ALL course Instructors.

Discussion Sessions:

  • The bulk of the classes will be devoted to Discussion of papers read prior to coming to class (2 per class) for which everyone will also have watched oral presentations prior to coming to class (2 per class). Oral presentations will be in the form of pre-recorded videos made by students taking the class.
  • During the Discussion sessions (ZOOM breakout rooms) the Instructors will ask participants to explain details of the papers they have read which will form the basis of the "Discussion" part of their grade. Thus, it is important that everyone attend all of the synchronous classes. All students are expected to participate especially those whose papers are being discussed that day. Breakout room discussion will NOT be recorded.
  • If a student is unable to attend an online class they will instead be asked to submit a one page Paper Summary Sheet answering questions about the papers that were discussed on the day that they missed. The "Paper Summary Sheets" will form the basis of the "Discussion" part of their grade for any synchronous classes that were missed.
  • If a students misses an online class they will have 24 hours to submit their Paper Summary Sheets. Late Paper Summary Sheets will not be accepted.

Oral Presentations:

  • Students will pre-record 2 different ZOOM presentations based on 2 different papers from the schedule shown below.
  • Students will email their pre-recorded presentations to ALL course Instructors by Friday at 5PM before the week in which their presentations will be discussed.
  • Course participants will watch the student presentations before the class in which they are to be discussed.
  • Course participants will score each student presentation using a Presentation Assessment Sheet which will be emailed to ALL Instructors within 24 hours after the class in which the presentation were discussed.

Take home Quizzes:

  • At the end of each of the five different sections of the course a take home quiz will be assigned. The "Quiz" portion of the grade will based on the four highest quiz scores attained.
  • Although the Quiz format is open book, students are expected to work alone and do their own work. Representing another person's work as your own is always wrong. The Instructors are required to report any suspected instances of academic dishonesty to the Academic Judiciary.
  • Students will have 24 hours to completed each Quiz. Late Quizzes will not be accepted.
  • Quiz question answers should integrate topics, concepts, and outcomes of the different papers covered for the section being tested.

Recording Your Oral Presentations Using Zoom: It is very straightforward to create a video of yourself giving a PPT presentation using Zoom:

  • Download the Zoom app ( https://it.stonybrook.edu/services/zoom )
  • Open the Zoom app
  • Create a new Zoom meeting with only yourself (make sure audio and video are turned on)
  • Share your screen
  • Open your paper presentation in PPT and put in presentation mode
  • Start recording and give a short test presentation to make sure that everything is working smoothly (use mouse as necessary to highlight specific regions of your slides)
  • Stop recording and quit the meeting
  • Open the newly created video (using QuickTime or some other video player) to make sure that your test presentation has both audio and video and looks good
  • Follow the above steps to create your "full-length" video presentation (videos should not exceed 20-25 minutes)
  • Email your video to ALL Instructors who will make it available to the class (please name your Zoom video Lastname_Paper1.mp4 or Lastname_Paper2.mp4 )

Oral Presentation Guidelines: Pre-recorded talks should be formal (as if at a scientific meeting or job talk), presented in PPT format, and be 20-25 minutes long. All talks will be posted on the course website. References should occur at the bottom of each slide when necessary. Presentations should be based mostly on the primary references however secondary references and other sources may be required to make some presentations complete. It is the responsibility of each presenter to email their talk by Friday at 5PM before the week in which their talk is being discussed. Talks will likely be arranged in the following order:

  • Introduction/Background (include biological relevance if applicable)
  • Specifics of the System or General Problem
  • Computational Methods (theory) and Details (system setup) being used
  • Results and Discussion (critical interpretation of results and any problems/challenges)
  • Conclusions/Future
  • Acknowledgments



Date
Topic
Speaker and Presentation
Primary Reference
Secondary Reference
2020.08.24 Mon
  • Organizational Meeting
Rizzo, R. mp4 Course introduction and format. Go over Syllabus. Course participant background and introductions.
-
2020.08.26 Wed

SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE

  • Drug Discovery
1. Introduction, history, irrational vs. rational
2. Viral Target Examples

Rizzo, R. mp4

Rizzo, R. pdf

1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8

2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082

-
2020.08.31 Mon
  • Chemistry Review
1. Molecular structure, bonding, graphical representations
2. Functionality, properties of organic molecules

Rizzo, R. mp4

Rizzo, R. pdf

presentation
-
2020.09.02 Wed
  • Biomolecular Structure
1. Lipids, carbohydrates
2. Nucleic acids, proteins

Rizzo, R. mp4

Rizzo, R. pdf

presentation
structures of the 20 amino acid side chains
2020.09.07 Mon
  • No Class: Labor Day
-
-
-
2020.09.09 Wed
  • Molecular Interactions and Recognition
1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive

Rizzo, R. mp4

Rizzo, R. pdf

presentation
-
2020.09.14 Mon
  • Intro. to Methods in 3-D Structure Determination
1. Crystallography, NMR
2. Structure Quality, PDB in detail

Rizzo, R. mp4

Rizzo, R. pdf

presentation
-
-
-
-
Take home QUIZ for Section 1 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
-
2020.09.16 Wed

SECTION II: MOLECULAR MODELING

  • Classical Force Fields
1. All-atom Molecular Mechanics
2. OPLS

1. Adams, Dexter mp4
pdf

2. Chang, Jamie mp4
pdf

1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604

2. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236

1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92

2. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671

2020.09.21 Mon
  • Classical Force Fields
1. AMBER
  • Explicit Solvent Models
2. Water models (TIP3P, TIP4P, SPC)

1. Corbo, Chris mp4
pdf

2. Chung, So Young mp4
pdf

1. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197

2. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935

1. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280

2020.09.23 Wed
  • Explicit Solvent Models
1. Condensed-phase calculations (DGhydration)
  • Continuum Solvent Models
2. Generalized Born Surface Area (GBSA)

1. Dovedytis, Matt mp4
pdf

2. Foran, Chris mp4
pdf

1. Jorgensen, W. L.; et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054

2. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129

-
2020.09.28 Mon
  • Continuum Solvent Models
1. Poisson-Boltzmann Surface Area (PBSA)
2. Accuracy of partial atomic changes for GBSA and PBSA

1. Hall, Carole mp4
pdf

2. Lang, Liam mp4
pdf

1. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988

2. Rizzo, R. C.; et al., Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. J. Chem. Theory. Comput. 2006, 2, 128-139

-
-
-
-
Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
Additional resources:

1. Duarte Ramos Matos, G.; et al., Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 2017, 62, 1559-1569
2. Loeffler, H. H.; et al., Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages J. Chem. Theory Comput. 2018, 14, 5567−5582

2020.09.30 Wed

SECTION III: SAMPLING METHODS

  • Molecular Conformations
1. Small molecules, peptides, relative energy, minimization methods
  • Sampling Methods for Large Simulations
2. Molecular dynamics (MD)

1. Mingione, Victoria mp4
pdf

2. Palmeri, Chris mp4
pdf

1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75

2. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9

1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College

1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84

2020.10.05 Mon
  • Sampling Methods for Large Simulations
1. Monte Carlo (MC)
  • Predicting Protein Structure
2. Ab initio structure prediction (protein-folding)

1. Pasumarthy, Sishir mp4
pdf

2. Quispe-Carbajal, Mariella mp4
pdf

1. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.

1. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513

2. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19

1. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092

2020.10.07 Wed
  • Predicting Protein Structure
1. Example Trp-cage
2. Comparative (homology) modeling

1. Rajesh, Chandana mp4
pdf

2. Rangwala, Aziz mp4
pdf

1. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9

2. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325

1. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502

2. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21

2020.10.12 Mon
  • Predicting Protein Structure
1. Case studies (CASP)
2. Accelerated MD for Blind Protein Prediction

1. Sadatrezaei, Golbahar mp4
pdf

2. Steier, Joshua mp4
pdf

1. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9

2. Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv. 2016, 2

1. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36

2020.10.14 Wed
  • Predicting Protein Structure
1. MD x-ray refinement
2. Protein Design

1. Contorno, Shaymus mp4
pdf


2. He, Yongle mp4
pdf

1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12

2. Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 2003, 302, 1364-1368

1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90

-
-
-
Take home QUIZ for Section 3 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
-
2020.10.19 Mon

SECTION IV: LEAD DISCOVERY

  • Docking
1. Introduction to DOCK
2. Test Sets (pose reproduction)

1. Hetherington, Caitlin mp4
pdf

2. Koller, Angus mp4
pdf

1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619

2. Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Info. Model. 2010, 50, 1986-2000

1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28

2. The CCDC/Astex Test Set

2020.10.21 Wed
  • Docking
1. Test Sets (virtual screening)
2. Test Sets (database enrichment)

1. Pak, Steven mp4
pdf

2. Adams, Dexter mp4
pdf


1. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82

2. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801

1. ZINC Website at UCSF, Shoichet group

2020.10.26 Mon
  • Docking
1. Footprint-based scoring
  • Discovery Methods
2. Hotspot probes (GRID)

1. Chang, Jaime mp4
pdf

2. Corbo, Chris mp4
pdf

1. Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. J. Comput. Chem. 2011, 32, 2273-2289.

2. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57

-
2020.10.28 Wed
  • Discovery Methods
1. COMFA
2 Pharmacophores

1. Chung, So Young mp4
pdf

2. Dovedytis, Matt mp4
pdf

1. Kubinyi, H., Comparative molecular field analysis (CoMFA). Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998

2. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450

1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967

2020.11.02 Mon
  • Discovery Methods.
1. Pharmacophores
2. De novo design

1. Foran, Chris mp4
pdf

2. Hall, Carole mp4
pdf

1. Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. Proteins 2003, 51, 172-188

2. Cheron, N.; et al., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. J. Med. Chem. 2016, 59, 4171-4188

-
2020.11.04 Wed
  • Discovery Methods
1. De novo design
2. Genetic Algorithm

1. Lang, Liam mp4
pdf

2. Mingione, Victoria mp4
pdf

1. Jorgensen, W.; et al., Efficient drug lead discovery and optimization. Acc. of Chem. Research 2009, 42 (6), 724-733

2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33

-
-
-
-
Take home QUIZ for Section 4 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
-
2020.11.09 Mon

SECTION V: LEAD REFINEMENT

  • Free Energy Methods
1. Thermolysin with two ligands (FEP)
2. Fatty acid synthase I ligands (TI)

1. Palmeri, Chris mp4
pdf

2. Pasumarthy, Sishir mp4
pdf

1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6

2. Labahn, A.; et al., Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. Bioorg Med Chem. 2012, 20, 3446-53

1&2. Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189

1&2. Kollman, P., Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417

2. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116

2020.11.11 Wed
  • MM-PB/GBSA
1. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods
  • MM-GBSA case studies
2. EGFR and mutants

1. Quispe-Carbajal, Mariella mp4
pdf

2. Rajesh, Chandana mp4
pdf


1. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897

2. Balius, T.E.; Rizzo, R. C. Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry, 2009, 48, 8435-8448

2020.11.16 Mon
  • MM-GBSA case studies
1. ErbB family selectivity
  • Linear Response
2. Intro to Linear Response (LR method)

1. Rangwala, Aziz mp4
pdf

2. Sadatrezaei, Golbahar mp4
pdf


1. Huang, Y.; Rizzo, R. C. A Water-based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, Biochemistry, 2012, 51, 2390-2406

2. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81

-
2020.11.18 Wed
  • Linear Response
1. Inhibition of protein kinases (Extended LR method)
  • Properties of Known Drugs
2. Molecular Scaffolds (frameworks) and functionality (side-chains

1. Steier, Joshua mp4
pdf

2. Contorno, Shaymus mp4
pdf


1. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549

2. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93

2. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9

-
2020.11.23 Mon
  • No Class: Thanksgiving
-
-
-
2020.11.25 Wed
  • No Class: Thanksgiving
-
-
-
2020.11.30 Mon
  • Properties of Known Drugs
1. Lipinski Rule of Five
2 ADME Prediction

1. He, Yongle mp4
pdf

2. Hetherington, Caitlin mp4
pdf

1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26

2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349

1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6

2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152

2020.12.02 Wed
  • Properties of Known Drugs
1. Synthetic Accessibility
2. QED

1. Koller, Angus mp4
pdf

2. Pak, Steve mp4
pdf

1. Ertl, P.; Schuffenhauer, A.; Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminformatics, 2009, 1, 8

2. Bickerton, G. R., Quantifying the chemical beauty of drugs. Nature Chemistry 2012, 4, 90-98

-
2020.12.07 Mon
  • Course Wrap up
Thermodynamic Cycles

Course Wrap-Up Topics

-
-
-
-
-
Take home QUIZ for Section 5 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
-
-
  • Final Exam
-
No Final Exam in AMS-535/CHE-535 for Fall 2020
-

Required Syllabi Statements:

The University Senate Undergraduate and Graduate Councils have authorized that the following required statements appear in all teaching syllabi (graduate and undergraduate courses) on the Stony Brook Campus.. This information is also located on the Provost’s website: https://www.stonybrook.edu/commcms/provost/faculty/handbook/academic_policies/syllabus_statement.php


Student Accessibility Support Center Statement: If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, 128 ECC Building, (631) 632-6748, or at sasc@stonybrook.edu. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and the Student Accessibility Support Center. For procedures and information go to the following website: https://ehs.stonybrook.edu/programs/fire-safety/emergency-evacuation/evacuation-guide-people-physical-disabilities and search Fire Safety and Evacuation and Disabilities.


Academic Integrity Statement: Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html


Critical Incident Management: Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook.