Difference between revisions of "2018 Denovo design tutorial 1 with PDB 2NNQ"
(→Focused Denovo Growth) |
|||
Line 1: | Line 1: | ||
− | ==2018 Denovo design | + | ==2018 Denovo design with PDB 2NNQ (Focused)== |
− | ==Files Needed== | + | ===Files Needed=== |
− | ==Fragment Libraries== | + | ===Fragment Libraries=== |
A focused fragment library will be used in this tutorial, in order to attempt building the same ligand. A focused fragment library can be generated using the same ligand. | A focused fragment library will be used in this tutorial, in order to attempt building the same ligand. A focused fragment library can be generated using the same ligand. | ||
Line 51: | Line 51: | ||
Once fragment generation is completed, following files will be generated. (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, fraglib_torenv.dat) Open the mol2 files using chimera and check if the fragments match with the ligand used for fragment generation. | Once fragment generation is completed, following files will be generated. (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, fraglib_torenv.dat) Open the mol2 files using chimera and check if the fragments match with the ligand used for fragment generation. | ||
− | ==Focused Denovo Growth== | + | ===Focused Denovo Growth=== |
The generated fragments will be used to perform the de novo dock. Here the fragments will added together restricted by different properties like maximum layers, formal charge and molecular weight. Before each connection, DOCK will check with the torsion environment file created in frgment generation to see if that particular connection is seen before. If not the connection won't be made. | The generated fragments will be used to perform the de novo dock. Here the fragments will added together restricted by different properties like maximum layers, formal charge and molecular weight. Before each connection, DOCK will check with the torsion environment file created in frgment generation to see if that particular connection is seen before. If not the connection won't be made. | ||
Line 90: | Line 90: | ||
rank_ligands no | rank_ligands no | ||
− | ==Focused Denovo Rescore== | + | ===Focused Denovo Rescore=== |
+ | |||
+ | ==Generic de novo growth with PDB 2NNQ== | ||
+ | In this section, the de novo growth will be done using a fragment library generated by many random ligands. This allows DOCK to generate novel ligands which are not restricted by the fragments and torsion environment of the crystal ligand. | ||
+ | |||
+ | In the previous section, single grid was used as the scoring function to generate the ligands. In this section, the interactions of the ligand with the most significant residues will be considered for the scoring function. In order to do so, multigrid scoring method where each of the significant residues will be described using unique grids, and a common grid for the rest of the residues. | ||
+ | |||
+ | ===Specifying Primary Residues=== | ||
+ | First, the significant residues for the binding of the ligand has to be specified. Create unique directory for the generic de novo growth. Create an input file. (rescore.in) Use the following lines to generate the input file. | ||
+ | |||
+ | conformer_search_type rigid | ||
+ | use_internal_energy no | ||
+ | ligand_atom_file ../2nnq_lig_withH.mol2 (use the ligand mol2 file) | ||
+ | limit_max_ligands no | ||
+ | skip_molecule no | ||
+ | read_mol_solvation no | ||
+ | calculate_rmsd no | ||
+ | use_database_filter no | ||
+ | orient_ligand no | ||
+ | bump_filter no | ||
+ | score_molecules yes | ||
+ | contact_score_primary no | ||
+ | contact_score_secondary no | ||
+ | grid_score_primary no | ||
+ | grid_score_secondary no | ||
+ | multigrid_score_primary no | ||
+ | multigrid_score_secondary no | ||
+ | dock3.5_score_primary no | ||
+ | dock3.5_score_secondary no | ||
+ | continuous_score_primary no | ||
+ | continuous_score_secondary no | ||
+ | footprint_similarity_score_primary yes | ||
+ | footprint_similarity_score_secondary no | ||
+ | fps_score_use_footprint_reference_mol2 yes | ||
+ | fps_score_footprint_reference_mol2_filename ../2nnq_lig_withH.mol2 (use the ligand mol2 file) | ||
+ | fps_score_foot_compare_type Euclidean | ||
+ | fps_score_normalize_foot no | ||
+ | fps_score_foot_comp_all_residue no | ||
+ | fps_score_choose_foot_range_type threshold | ||
+ | fps_score_vdw_threshold 1 | ||
+ | fps_score_es_threshold 0.5 | ||
+ | fps_score_hb_threshold 0.5 | ||
+ | fps_score_use_remainder yes | ||
+ | fps_score_receptor_filename ../2nnq_rec.mol2 (use the mol2 file for the receptor) | ||
+ | fps_score_vdw_att_exp 6 | ||
+ | fps_score_vdw_rep_exp 12 | ||
+ | fps_score_vdw_rep_rad_scale 1 | ||
+ | fps_score_use_distance_dependent_dielectric yes | ||
+ | fps_score_dielectric 4.0 | ||
+ | fps_score_vdw_fp_scale 1 | ||
+ | fps_score_es_fp_scale 1 | ||
+ | fps_score_hb_fp_scale 0 | ||
+ | pharmacophore_score_secondary no | ||
+ | descriptor_score_secondary no | ||
+ | gbsa_zou_score_secondary no | ||
+ | gbsa_hawkins_score_secondary no | ||
+ | SASA_score_secondary no | ||
+ | amber_score_secondary no | ||
+ | minimize_ligand no | ||
+ | atom_model all | ||
+ | vdw_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/vdw_AMBER_parm99.defn | ||
+ | flex_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex.defn | ||
+ | flex_drive_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex_drive.tbl | ||
+ | ligand_outfile_prefix rescore.out | ||
+ | write_footprints yes | ||
+ | write_hbonds no | ||
+ | write_orientations no | ||
+ | num_scored_conformers 1 | ||
+ | rank_ligands no |
Revision as of 00:44, 5 March 2018
Contents
2018 Denovo design with PDB 2NNQ (Focused)
Files Needed
Fragment Libraries
A focused fragment library will be used in this tutorial, in order to attempt building the same ligand. A focused fragment library can be generated using the same ligand.
Create a new directory for the fragment library.
mkdir fraglib
Inside the fraglib directory create a new input file for fragment generation.
touch fraglib.in
Generate the fragments by calling the input file through DOCK6
dock6 -i fraglib.in
Answer the prompted questions interactively using the following lines.
conformer_search_type flex write_fragment_libraries yes fragment_library_prefix fraglib fragment_library_freq_cutoff 1 fragment_library_sort_method freq fragment_library_trans_origin no use_internal_energy yes internal_energy_rep_exp 12 internal_energy_cutoff 100.0 ligand_atom_file /Path_to_file/2nnq_lig_withH.mol2 limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand yes automated_matching yes receptor_site_file /Path_to_file/selected_spheres.sph max_orientations 1000 critical_points no chemical_matching no use_ligand_spheres no bump_filter no score_molecules no atom_model all vdw_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/vdw_AMBER_parm99.defn flex_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex.defn flex_drive_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex_drive.tbl ligand_outfile_prefix output write_orientations no num_scored_conformers 1 rank_ligands no
Once fragment generation is completed, following files will be generated. (fraglib_linker.mol2, fraglib_rigid.mol2, fraglib_scaffold.mol2, fraglib_sidechain.mol2, fraglib_torenv.dat) Open the mol2 files using chimera and check if the fragments match with the ligand used for fragment generation.
Focused Denovo Growth
The generated fragments will be used to perform the de novo dock. Here the fragments will added together restricted by different properties like maximum layers, formal charge and molecular weight. Before each connection, DOCK will check with the torsion environment file created in frgment generation to see if that particular connection is seen before. If not the connection won't be made.
Create a new directory for denovo dock.
mkdir denovo
Create a new input file for denovo dock.
touch denovo.in
Run the input file through dock.
dock6 -i denovo.in
Answer the prompted question interactively using the following lines.
conformer_search_type flex write_fragment_libraries yes fragment_library_prefix fraglib fragment_library_freq_cutoff 1 fragment_library_sort_method freq fragment_library_trans_origin no use_internal_energy no ligand_atom_file ./candidate_mol_gen_frag.mol2 limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand no bump_filter no score_molecules no atom_model all vdw_defn_file ../../../dock/box/vdw_AMBER_parm99.defn flex_defn_file ../../../dock/dock/flex.defn flex_drive_file ../../../dock/dock/flex_drive.tbl ligand_outfile_prefix output write_orientations no num_scored_conformers 1 rank_ligands no
Focused Denovo Rescore
Generic de novo growth with PDB 2NNQ
In this section, the de novo growth will be done using a fragment library generated by many random ligands. This allows DOCK to generate novel ligands which are not restricted by the fragments and torsion environment of the crystal ligand.
In the previous section, single grid was used as the scoring function to generate the ligands. In this section, the interactions of the ligand with the most significant residues will be considered for the scoring function. In order to do so, multigrid scoring method where each of the significant residues will be described using unique grids, and a common grid for the rest of the residues.
Specifying Primary Residues
First, the significant residues for the binding of the ligand has to be specified. Create unique directory for the generic de novo growth. Create an input file. (rescore.in) Use the following lines to generate the input file.
conformer_search_type rigid use_internal_energy no ligand_atom_file ../2nnq_lig_withH.mol2 (use the ligand mol2 file) limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand no bump_filter no score_molecules yes contact_score_primary no contact_score_secondary no grid_score_primary no grid_score_secondary no multigrid_score_primary no multigrid_score_secondary no dock3.5_score_primary no dock3.5_score_secondary no continuous_score_primary no continuous_score_secondary no footprint_similarity_score_primary yes footprint_similarity_score_secondary no fps_score_use_footprint_reference_mol2 yes fps_score_footprint_reference_mol2_filename ../2nnq_lig_withH.mol2 (use the ligand mol2 file) fps_score_foot_compare_type Euclidean fps_score_normalize_foot no fps_score_foot_comp_all_residue no fps_score_choose_foot_range_type threshold fps_score_vdw_threshold 1 fps_score_es_threshold 0.5 fps_score_hb_threshold 0.5 fps_score_use_remainder yes fps_score_receptor_filename ../2nnq_rec.mol2 (use the mol2 file for the receptor) fps_score_vdw_att_exp 6 fps_score_vdw_rep_exp 12 fps_score_vdw_rep_rad_scale 1 fps_score_use_distance_dependent_dielectric yes fps_score_dielectric 4.0 fps_score_vdw_fp_scale 1 fps_score_es_fp_scale 1 fps_score_hb_fp_scale 0 pharmacophore_score_secondary no descriptor_score_secondary no gbsa_zou_score_secondary no gbsa_hawkins_score_secondary no SASA_score_secondary no amber_score_secondary no minimize_ligand no atom_model all vdw_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/vdw_AMBER_parm99.defn flex_defn_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex.defn flex_drive_file /gpfs/projects/AMS536/zzz.programs/dock6/parameters/flex_drive.tbl ligand_outfile_prefix rescore.out write_footprints yes write_hbonds no write_orientations no num_scored_conformers 1 rank_ligands no