|
|
Line 23: |
Line 23: |
| |- | | |- |
| |} | | |} |
| + | <br> |
| + | <br> |
| | | |
− | == Online Syllabus Notes == | + | '''== Online Syllabus Notes ==''' |
| As a result of the COVID-19 outbreak this course is being offered online. It is a mixed course in that it there are both synchronous and asynchronous aspects. A summary of these changes include: | | As a result of the COVID-19 outbreak this course is being offered online. It is a mixed course in that it there are both synchronous and asynchronous aspects. A summary of these changes include: |
| | | |
Date
|
Topic
|
Speaker and Presentation
|
Primary Reference
|
Secondary Reference
|
2019.08.24 Mon
|
|
-
|
-
|
-
|
2019.08.26 Wed
|
SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
- 1. Introduction, history, irrational vs. rational
- 2. Viral Target Examples
|
Rizzo, R.
|
1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8
2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082
|
-
|
2019.08.31 Mon
|
- 1. Molecular structure, bonding, graphical representations
- 2. Functionality, properties of organic molecules
|
Rizzo, R.
|
presentation
|
-
|
2019.09.02 Wed
|
- 1. Lipids, carbohydrates
- 2. Nucleic acids, proteins
|
Rizzo, R.
|
presentation
|
structures of the 20 amino acid side chains
|
2019.09.07 Mon
|
|
-
|
-
|
-
|
2019.09.09 Wed
|
- Molecular Interactions and Recognition
- 1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
- 2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive
|
Rizzo, R.
|
presentation
|
-
|
2019.09.14 Mon
|
- Intro. to Methods in 3-D Structure Determination
- 1. Crystallography, NMR
- 2. Structure Quality, PDB in detail
|
Rizzo, R.
|
presentation
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 1 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.09.16 Wed
|
SECTION II: MOLECULAR MODELING
- 1. All-atom Molecular Mechanics
- 2. OPLS
|
1. last, first
2. last, first
|
1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604
2. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236
|
1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92
2. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671
|
2019.09.21 Mon
|
- 1. AMBER
- 2. Water models (TIP3P, TIP4P, SPC)
|
1. last, first
2. last, first
|
1. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197
2. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935
|
1. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280
|
2019.09.23 Wed
|
- 1. Condensed-phase calculations (DGhydration)
- 2. Generalized Born Surface Area (GBSA)
|
1. last, first
2. last, first
|
1. Jorgensen, W. L.; et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054
2. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129
|
-
|
2019.09.28 Mon
|
- 1. Poisson-Boltzmann Surface Area (PBSA)
- 2. Accuracy of partial atomic changes for GBSA and PBSA
|
1. last, first
2. last, first
|
1. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988
2. Rizzo, R. C.; et al., Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. J. Chem. Theory. Comput. 2006, 2, 128-139
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.09.30 Wed
|
SECTION III: SAMPLING METHODS
- 1. Small molecules, peptides, relative energy, minimization methods
- Sampling Methods for Large Simulations
- 2. Molecular dynamics (MD)
|
1. last, first
2. last, first
|
1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75
2. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9
|
1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College
1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84
|
2019.10.05 Mon
|
- Sampling Methods for Large Simulations
- 1. Monte Carlo (MC)
- Predicting Protein Structure
- 2. Ab initio structure prediction (protein-folding)
|
1. last, first
2. last, first
|
1. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.
1. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513
2. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19
|
1. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092
|
2019.10.07 Wed
|
- Predicting Protein Structure
- 1. Example Trp-cage
- 2. Comparative (homology) modeling
|
1. last, first
2. last, first
|
1. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9
2. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325
|
1. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502
2. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21
|
2019.10.12 Mon
|
- Predicting Protein Structure
- 1. Case studies (CASP)
- 2. Accelerated MD for Blind Protein Prediction
|
1. last, first
2. last, first
|
1. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9
2. Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv. 2016, 2
|
1. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36
|
2019.10.14 Wed
|
- Predicting Protein Structure
- 1. MD x-ray refinement
- 2. Protein Design
|
1. last, first
2. last, first
|
1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12
1. Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 2003, 302, 1364-1368
|
1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90
|
-
|
-
|
-
|
Take home QUIZ for Section 3 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.10.19 Mon
|
SECTION IV: LEAD DISCOVERY
- 1. Introduction to DOCK
- 2. Test Sets (pose reproduction)
|
1. last, first
2. last, first
|
1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619
2. Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Info. Model. 2010, 50, 1986-2000
|
1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28
2. The CCDC/Astex Test Set
|
2019.10.21 Wed
|
- 1. Test Sets (virtual screening)
- 2. Test Sets (database enrichment)
|
1. last, first
2. last, first
|
1. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82
2. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801
|
1. ZINC Website at UCSF, Shoichet group
|
2019.10.26 Mon
|
- 1. Footprint-based scoring
- 2. Hotspot probes (GRID)
|
1. last, first
2. last, first
|
1. Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. J. Comput. Chem. 2011, 32, 2273-2289.
1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57
|
-
|
2019.10.28 Wed
|
- 1. COMFA
- 2 Pharmacophores
|
1. last, first
2. last, first
|
1. Kubinyi, H., Comparative molecular field analysis (CoMFA). Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998
2. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450
|
1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967
|
2019.11.02 Mon
|
- 1. Pharmacophores
- 2. De novo design
|
1. last, first
2. last, first
|
1. Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. Proteins 2003, 51, 172-188
2. Cheron, N.; et al., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. J. Med. Chem. 2016, 59, 4171-4188
|
-
|
2019.11.04 Wed
|
- 1. De novo design
- 2. Genetic Algorithm
|
1. last, first
2. last, first
|
1. Jorgensen, W.; et al., Efficient drug lead discovery and optimization. Acc. of Chem. Research 2009, 42 (6), 724-733
2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 4 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.11.09 Mon
|
SECTION V: LEAD REFINEMENT
- 1. Thermolysin with two ligands (FEP)
- 2. Fatty acid synthase I ligands (TI)
|
1. last, first
2. last, first
|
1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6
2. Labahn, A.; et al., Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. Bioorg Med Chem. 2012, 20, 3446-53
|
1&2. Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189
1&2. Kollman, P., Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417
2. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116
|
2019.11.11 Wed
|
- 1. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods
- 2. EGFR and mutants
|
1. last, first
2. last, first
|
1. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897
2. Balius, T.E.; Rizzo, R. C. Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry, 2009, 48, 8435-8448
|
|
2019.11.16 Mon
|
- 1. ErbB family selectivity
- 2. Intro to Linear Response (LR method)
|
1. last, first
2. last, first
|
1. Huang, Y.; Rizzo, R. C. A Water-based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, Biochemistry, 2012, 51, 2390-2406
2. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81
|
-
|
2019.11.18 Wed
|
- 1. Inhibition of protein kinases (Extended LR method)
- Properties of Known Drugs
- 2. Molecular Scaffolds (frameworks) and functionality (side-chains
|
1. last, first
2. last, first
|
1. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549
2. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93
2. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9
|
-
|
2019.11.23 Mon
|
|
-
|
-
|
-
|
2019.11.23 Wed
|
|
-
|
-
|
-
|
2019.11.30 Mon
|
- Properties of Known Drugs
- 1. Lipinski Rule of Five
- 2 ADME Prediction
|
1. last, first
2. last, first
|
1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26
2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349
|
1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6
2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152
|
2019.12.02 Wed
|
|
-
|
-
|
-
|
2019.12.07 Mon
|
|
-
|
-
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 5 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
-
|
|
-
|
No Final Exam in AMS-535/CHE-535 for Fall 2020
|
-
|