Difference between revisions of "2021 DOCK tutorial 1 with PDBID 1HW9"

From Rizzo_Lab
Jump to: navigation, search
(DOCK)
Line 5: Line 5:
  
 
'''DOCK 6''' is one of the many tools available to computational biologists that predicts ligand binding geometries and interactions. The functions of DOCK 6 are diverse and have several general applications. A primary use of the program involves a virtual screening of thousands of molecules for an intended purpose. These purposes can include database screenings for molecules that inhibit enzyme activity, bind a particular protein, or even bind to larger complexes. As more versions of the program are released, new features are added such as the inclusion of solvation and receptor flexibility considerations in its calculations.
 
'''DOCK 6''' is one of the many tools available to computational biologists that predicts ligand binding geometries and interactions. The functions of DOCK 6 are diverse and have several general applications. A primary use of the program involves a virtual screening of thousands of molecules for an intended purpose. These purposes can include database screenings for molecules that inhibit enzyme activity, bind a particular protein, or even bind to larger complexes. As more versions of the program are released, new features are added such as the inclusion of solvation and receptor flexibility considerations in its calculations.
 +
 +
== IHW9 ==

Revision as of 15:18, 24 February 2021

Introduction

DOCK

DOCK 6 is one of the many tools available to computational biologists that predicts ligand binding geometries and interactions. The functions of DOCK 6 are diverse and have several general applications. A primary use of the program involves a virtual screening of thousands of molecules for an intended purpose. These purposes can include database screenings for molecules that inhibit enzyme activity, bind a particular protein, or even bind to larger complexes. As more versions of the program are released, new features are added such as the inclusion of solvation and receptor flexibility considerations in its calculations.

IHW9