|   |   | 
| Line 430: | Line 430: | 
|  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.17.ams535.talk01.pdf  Liao, J.] |  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.17.ams535.talk01.pdf  Liao, J.] | 
|  |  |  |  | 
| − | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.17.ams535.talk02.pdf Liu, J. ] | + | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.17.ams535.talk02.pdf TBA. ] | 
|  | || |  | || | 
|  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Lawrenz001.pdf Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. ''J. Chem. Theory Comput.'' '''2009''', ''5'', 1106-1116] |  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Lawrenz001.pdf Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. ''J. Chem. Theory Comput.'' '''2009''', ''5'', 1106-1116] | 
| Line 447: | Line 447: | 
|  | || |  | || | 
|  |  |  |  | 
| − | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.22.ams535.talk01.pdf  Liu, Y.] | + | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.22.ams535.talk01.pdf  Liu, J.] | 
|  |  |  |  | 
| − | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.22.ams535.talk02.pdf  Messina,D.] | + | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.22.ams535.talk02.pdf  Liu, Y.] | 
|  |  |  |  | 
|  | || |  | || | 
| Line 479: | Line 479: | 
|  |  |  |  | 
|  | || |  | || | 
| − | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.29.ams535.talk01.pdf  Spaqnuolo,L.] | + | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.29.ams535.talk01.pdf  Messina, D.] | 
|  |  |  |  | 
| − | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.29.ams535.talk02.pdf  Van Wart,T.] | + | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.11.29.ams535.talk02.pdf  Spaqnuolo, L.] | 
|  |  |  |  | 
|  | || |  | || | 
| Line 499: | Line 499: | 
|  |  |  |  | 
|  | || |  | || | 
| − | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.01.ams535.talk01.pdf  Yang,R.] | + | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.01.ams535.talk01.pdf  Van Wart, T.] | 
|  |  |  |  | 
| − | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.01.ams535.talk02.pdf  Yao,Y.] | + | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.01.ams535.talk02.pdf  Yang, R.] | 
|  |  |  |  | 
|  | || |  | || | 
| Line 522: | Line 522: | 
|  | || |  | || | 
|  |  |  |  | 
| − | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk01.pdf  Yerramilli,V.] | + | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk01.pdf  Yao, Y.] | 
|  |  |  |  | 
| − | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk02.pdf  Yu,W.] | + | 2. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk02.pdf  Yerramilli, V.] | 
|  |  |  |  | 
|  |  |  |  | 
| Line 549: | Line 549: | 
|  | || |  | || | 
|  |  |  |  | 
| − | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk01.pdf  TBA] | + | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2010.12.06.ams535.talk01.pdf  Yu, W.] | 
|  |  |  |  | 
|  |  |  |  | 
| Date | Topic | Speaker and Presentation | Primary Reference | Secondary Reference | 
| 2010.08.30 Mon |  | - | - | - | 
| 2010.09.01 Wed | SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
 Introduction, history, irrational vs. rationalViral Target Examples
 | Rizzo, R. | 1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8
 2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082
 | - | 
| 2010.09.06 Mon |  | - | - | - | 
| 2010.09.08 Wed | Class ends at 5:00PMMolecular structure, bonding, graphical representations Functionality, properties of organic molecules 
 | Rizzo, R. | presentation | - | 
| 2010.09.13 Mon | Lipids, carbohydrates Nucleic acids, proteins  
 | Rizzo, R. | presentation | - | 
| 2010.09.15 Wed | Molecular Interactions and Recognition
 Electrostastics, VDW interactions, hydrophobic effect, molecular recognition (binding energy) Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive  
 | Rizzo, R. | presentation | - | 
| 2010.09.20 Mon
Class in diff location and time | *CHE-607 Modern Drug Design and Discovery: Computational Biology Lectures | 1. Simmerling, C.
 2. Rizzo, R. 
 | NOTE: For today only we will merge with Professor Ojima's "Modern Drug Design and Discovery" class.
 CLASS ROOM CHANGE and TIME CHANGE:
Chemistry Department Room 410, 3:20PM - 5:20PM | - | 
| 2010.09.22 Wed | Intro. to Methods in 3-D Structure Determination
 Crystallography, NMR Structure Quality, PDB in detail 
 | Rizzo, R. | presentation | - | 
| 2010.09.27 Mon | Quiz Prior Section I SECTION II: MOLECULAR MODELING
 All-atom Molecular Mechanics 
 | Guest Lecture
 Balius, T.
 | 1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604
 | 1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92
 | 
| 2010.09.29 Wed | OPLS AMBER  
 | 1. Akter, R.
 2. Cao, Y.
 | 1. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236
 2. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197
 | 1. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671
 2. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280
 | 
| 2010.10.04 Mon | Water models (TIP3P, TIP4P, SPC) Condensed-phase calculations (DGhydration)
 | 1. Chen, J.
 2. Conte, M.
 
 | 1. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935
 2. Jorgensen, W. L.;  et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054
 | - | 
| 2010.10.06 Wed | Generalized Born Surface Area (GBSA)Poisson-Boltzmann Surface Area (PBSA)  
 | 1. Efaplomatides, C.
 2. Fochtman, B.
 | 1. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129
 2. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988 
 | - | 
| 2010.10.11 Mon | Quiz Prior Section II SECTION III: SAMPLING METHODS
 Small molecules, peptides, relative energy, minimization methods
 | 1. Gardin, J.
 | 1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75
 | 1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College
 1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84
 | 
| 2010.10.13 Wed | Primary Sampling Methods for Computer Simulations
 Molecular dynamics (MD) Monte Carlo (MC)
 | 1. Maringano, D.
 2. Hambardzhieva, E.
 | 1. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9
 2. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.
 2. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513
 | 2. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092
 | 
| 2010.10.18 Mon | Predicting Protein Structure I. 
 Ab initio prediction (protein-folding) Example Trp-cage
 | 1. Grinshpun, B.
 2. Hancewicz, J.
 | 1. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19
 2. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9
 | 1-2. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502
 | 
| 2010.10.20 Wed | Predicting Protein Structure II. 
 Comparative (homology) modeling Case studies (CASP)
 | 1. Jee, J.
 2. Jin, X.
 | 1. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325
 2. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9
 | 1. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21
 2. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36
 | 
| 2010.10.25 Mon | Enhanced Sampling Techniques
 Simulated annealing Protein Design 
 | Guest Lecture
 Au, L.
 | 1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12
 2. Street, A. G.; Mayo, S. L., Computational protein design. Structure. 1999, 7, 105-9
 | 1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90
 2. Lippow, S. M.; Tidor, B., Progress in computational protein design. Curr. Opin. Biotechnol. 2007, 18, 305-311
 | 
| 2010.10.27 Wed | Quiz Prior Section III SECTION IV: LEAD DISCOVERY
 Introduction to DOCK
 | Guest Lecture
 Mukherjee, S.
 | 1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28
 | 1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619
 | 
| 2010.11.01 Mon | Hotspot probes (GRID) COMFA 
 | 1. Lee, S.
 2. Lei, L.
 | 1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57
 2. Kubinyi, H., Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998
 | 1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967
 | 
| 2010.11.03 Wed | Pharmacaphores in drug design De nova design 
 | 1. Ashiru-Balogun, J.
 2. Li, M.
 | 1. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450
 2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33
 | - | 
| 2010.11.08 Mon | Test Sets (binding modes) Test Sets (virtual screening)
 | Guest Lecture
 Mukherjee, S.
 | 1. Nissink, J. W. M.; et al., A new test set for validating predictions of protein-ligand interaction. Prot. Struct. Funct. Genetics 2002, 49, 457-471
 2. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82
 | 1. The CCDC/Astex Test Set
 2. ZINC - A free database of commercially-available compounds for virtual screening
 | 
| 2010.11.10 Wed | Enrichment and Rescoring
 | Guest Lecture
Balius, T.
 | 1. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801
 2. Deng, Z; et al., Knowledge-Based Design of Target-Focused Libraries Using Protein-Ligand Interaction Constraints. J. Med. Chem. 2006, 49, 490-500
 | - | 
| 2010.11.15 Mon | Quiz Prior Section IV SECTION V: LEAD REFINEMENT
 Free Energy Perturbation (FEP)
 Thermolysin with two ligands 
 | 1. Li, Z.
 | 1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6
 | 1. Jorgensen, W. L., Free Energy Calculations:  A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189
 1. Kollman, P., Free Energy Calculations:  Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417
 | 
| 2010.11.17 Wed | Thermodynamic Integration
 Free energy calculation using TI TI case study
 | 1. Liao, J.
 2. TBA. 
 | 1. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116
 2. TBA; 
 | - | 
| 2010.11.22 Mon | Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods TI and MM-GBSA 
 | 1. Liu, J.
 2. Liu, Y.
 | 1. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897
 2. Cai, Y.; Schiffer, C. A.; Decomposing the Energetic Impact of Drug Resistant Mutations in HIV-1 Protease on Binding DRV. J. Chem. Theory Comput. 2010, 6, 1358-1368
 | - | 
| 2010.11.24 Wed | No Class: Following a Friday schedule
 | - | - | - | 
| 2010.11.29 Mon | EGFRHIVgp41 
 
 | 1. Messina, D.
 2. Spaqnuolo, L.
 | 1. Balius, T.; Rizzo, R. C.; Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry 2009, 48, 8435-8448
 2. Strockbine, B.; Rizzo, R. C., Binding of Anti-fusion Peptides with HIVgp41 from Molecular Dynamics Simulations: Quantitative Correlation with Experiment. Prot. Struct. Funct. Bioinformatics 2007, 63, 630-642
 | - | 
| 2010.12.01 Wed | Intro to Linear Response (LR method) Inhibition of protein kinases (Extended LR method) 
 | 1. Van Wart, T.
 2. Yang, R.
 | 1. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81
 2. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549
 | - | 
| 2010.12.06 Mon | Properties of Known Drugs
 Lipinski Rule of FiveADME prediction
 | 1. Yao, Y.
 2. Yerramilli, V.
 
 | 1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26
 2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349
 
 | 1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6
 2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152
 | 
| 2010.12.08 Wed | Properties of Known Drugs and Protein Structure Prediction III.
 Molecular Scaffolds (frameworks) and functionality (side-chains)TBA
 | 1. Yu, W.
 2. TBA.
 | 1. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93
 1. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9
 2. TBA
 | 2. TBA
 | 
| 2010.12.13 Mon | FINAL EXAM
MON
TIME TBA | - | NOTE: Unless otherwise noted the Final will be given in our regular class room. 
 FINAL EXAM IS CUMULATIVE
 | - |