Difference between revisions of "2016 AMBER tutorial with Beta Trypsin"
Stonybrook (talk | contribs) (→III. Simulation using pmemd) |
Stonybrook (talk | contribs) (→MM-GBSA Energy Calculation) |
||
Line 78: | Line 78: | ||
===MM-GBSA Energy Calculation=== | ===MM-GBSA Energy Calculation=== | ||
− | + | begin by creating a new directory | |
+ | |||
+ | mkdir 005.MMGBSA/ | ||
+ | |||
+ | as well as an input file | ||
+ | |||
+ | vim.gbrescore.in | ||
+ | |||
+ | the following parameters will provide a good estimate of the energy of binding based on solvation enthalpy and binding enthalpy | ||
+ | |||
+ | Single point GB energy calc | ||
+ | &cntrl | ||
+ | ntf = 1, ntb = 0, ntc = 2, | ||
+ | idecomp= 0, | ||
+ | igb = 5, saltcon= 0.00, | ||
+ | gbsa = 2, surften= 1.0, | ||
+ | offset = 0.09, extdiel= 78.5, | ||
+ | cut = 99999.0, nsnb = 99999, | ||
+ | imin = 5, maxcyc = 1, ncyc = 0, | ||
+ | / | ||
+ | |||
+ | We can now submit a job to the cluster we are working on. This script, inside a file named run.sander.rescore.csh , is designed for LIRED, however it can be modified for whatever supercomputer you are working on | ||
+ | |||
+ | #! /bin/tcsh | ||
+ | #PBS -l nodes=1:ppn=1 | ||
+ | #PBS -l walltime=48:00:00 | ||
+ | #PBS -o zzz.qsub.out | ||
+ | #PBS -e zzz.qsub.err | ||
+ | #PBS -V | ||
+ | #PBS -N mmgbsa | ||
+ | |||
+ | set workdir = /nfs/guest46/amber_tutorial/005.mmgbsa | ||
+ | |||
+ | cd $workdir | ||
+ | |||
+ | sander -O -i gb.rescore.in \ | ||
+ | -o gb.rescore.out.com \ | ||
+ | -p ../002.tleap/4TKG.com.gas.leap.prm7 \ | ||
+ | -c ../002.tleap/4TKG.com.gas.leap.rst7 \ | ||
+ | -y ../004.ptraj/4TKG.com.trj.stripfit \ | ||
+ | -r restrt.com \ | ||
+ | -ref ../002.tleap/4TKG.com.gas.leap.rst7 \ | ||
+ | -x mdcrd.com \ | ||
+ | -inf mdinfo.com | ||
+ | |||
+ | sander -O -i gb.rescore.in \ | ||
+ | -o gb.rescore.out.lig \ | ||
+ | -p ../002.tleap/4TKG.lig.gas.leap.prm7 \ | ||
+ | -c ../002.tleap/4TKG.lig.gas.leap.rst7 \ | ||
+ | -y ../004.ptraj/4TKG.lig.trj.stripfit \ | ||
+ | -r restrt.lig \ | ||
+ | -ref ../002.tleap/4TKG.lig.gas.leap.rst7 \ | ||
+ | -x mdcrd.lig \ | ||
+ | -inf mdinfo.lig | ||
+ | |||
+ | sander -O -i gb.rescore.in \ | ||
+ | -o gb.rescore.out.test.rec \ | ||
+ | -p ../002.tleap/4TKG.rec.gas.leap.prm7 \ | ||
+ | -c ../002.tleap/4TKG.rec.gas.leap.rst7 \ | ||
+ | -y ../004.ptraj/4TKG.rec.trj.stripfit \ | ||
+ | -r restrt.rec \ | ||
+ | -ref ../002.tleap/4TKG.rec.gas.leap.rst7 \ | ||
+ | -x mdcrd.rec \ | ||
+ | -inf mdinfo.rec | ||
+ | |||
+ | exit | ||
+ | |||
+ | Then submit the job as a .csh | ||
+ | |||
+ | qsub run.sander.rescore.csh | ||
+ | |||
+ | Your ligand, receptor, and receptor-ligand complex will all have .out files. The format should look | ||
+ | |||
+ | FINAL RESULTS | ||
+ | |||
+ | |||
+ | |||
+ | NSTEP ENERGY RMS GMAX NAME NUMBER | ||
+ | 1 5.9132E+03 2.0005E+01 1.2640E+02 C 159 | ||
+ | |||
+ | BOND = 661.8980 ANGLE = 1751.7992 DIHED = 2581.7692 | ||
+ | VDWAALS = -1696.6585 EEL = -13958.9335 EGB = -3125.9524 | ||
+ | 1-4 VDW = 747.0185 1-4 EEL = 7750.8118 RESTRAINT = 0.0000 | ||
+ | ESURF = 11201.4791 | ||
+ | minimization completed, ENE= 0.59132314E+04 RMS= 0.200047E+02 | ||
+ | |||
+ | We can now use a system of equations to elucidate various energies related to our system. | ||
+ | VDWAALS = ΔGvdw | ||
+ | E(ELS) = ΔGcoulombic | ||
+ | E(GB) = ΔGpolar | ||
+ | SASA = ESURF | ||
+ | |||
+ | |||
+ | ΔGnonpolar can be estimated by: | ||
+ | |||
+ | ΔGnonpolar = (Solvent Accessible Surface Area)*0.00542 + 0.92 | ||
+ | |||
+ | This equation is based on empirical observations relating a molecules surface area and solvation energy | ||
+ | |||
+ | ΔGnonpolar and ΔGmmgbsa are related by anther equation: | ||
+ | |||
+ | ΔGmmgbsa = ΔGvdw + ΔGcoul + ΔGpolar + ΔGnonpolar | ||
+ | |||
+ | all the information needed is in our output files. | ||
+ | |||
+ | ΔΔGbind can now be solved via the equation: | ||
+ | |||
+ | ΔΔGbind = ΔG(mmgbsa complex) – (ΔG(mmgbsa ligand) + ΔG(mmgbsa receptor) (3) | ||
+ | |||
+ | ΔΔGbind is a function of ligand position, so it is useful to plot it. For publications, it is standard protocol to include the mean and standard deviation for your ΔΔGbind. | ||
+ | |||
+ | Lets make a script named get.mmgbsa.csh to extract this sophisticated energetic estimation from the three initial output files of the calculations obtained solve for ΔΔGbind: | ||
+ | |||
+ | bash get.mmgbsa.csh | ||
+ | |||
+ | The output file will be .dat and we can easily use the program xmgrace to plot the information visually | ||
+ | |||
+ | xmgrace MMGBSA_vs_time.dat | ||
==V. Frequently Encountered Problems== | ==V. Frequently Encountered Problems== |
Revision as of 07:47, 10 April 2016
For additional Rizzo Lab tutorials see AMBER Tutorials.
In this tutorial, we will learn how to run a molecular dynamics simulation of a protein-ligand complex. We will then post-process that simulation by calculating structural fluctuations (with RMSD) and free energies of binding (MM-GBSA).
Contents
I. Introduction
Yaping
II. Structural Preparation
Antechamber, Parmchk, tLeap
Omar, Katie
III. Simulation using pmemd
PMEMD
Agatha, Beilei
MD in put file1 01md.in:
mkdir 01md.in
01mi.in: equilibration &cntrl imin = 1, maxcyc = 1000, ntmin = 2, ntx = 1, ntc = 1, ntf = 1, ntb = 1, ntp = 0, ntwx = 1000, ntwe = 0, ntpr = 1000, cut = 8.0, ntr = 1, restraintmask = ':1-224 & !@H=', restraint_wt = 5.0,
Copy 01md.in and rename it to 02md.in:
IV. Simulation Analysis
Ptraj
Lauren, Haoyue
ptraj.strip.wat.in:
trajin ../003.PMEMD/10md.trj 1 1000 1 trajin ../003.PMEMD/11md.trj 1 1000 1 trajout 1BJU.trj.strip nobox strip :WAT
ptraj.rec.rmsd.in:
trajin 1BJU.trj.strip trajout 1BJU.com.trj.stripfit reference ../002.ANTE.TLEAP/1BJU.com.gas.leap.rst7 rms reference out 1BJU.rmsd.CA.dat :1-223@CA
ptraj.lig.rmsd.in:
trajin 1BJU.com.trj.stripfit reference ../002.ANTE.TLEAP/1BJU.com.gas.leap.rst7 rms reference out 1BJU.lig.rmsd.dat :224@C*,N*,O*,S* nofit
ptraj.strip.rec.in:
trajin 1BJU.com.trj.stripfit 1 2000 1 trajout 1BJU.lig.trj.stripfit strip :1-223
ptraj.strip.lig.in:
trajin 1BJU.com.trj.stripfit 1 2000 1 trajout 1BJU.rec.trj.stripfit strip :224
ptraj.dist.in:
trajin 1BJU.com.trj.stripfit distance 171OD2_224N1 :171@OD2 :224@N1 out 171OD2_224N1.dat distance 171OD1_224N2 :171@OD1 :224@N2 out 171OD1_224N2.dat
MM-GBSA Energy Calculation
begin by creating a new directory
mkdir 005.MMGBSA/
as well as an input file
vim.gbrescore.in
the following parameters will provide a good estimate of the energy of binding based on solvation enthalpy and binding enthalpy
Single point GB energy calc
&cntrl
ntf = 1, ntb = 0, ntc = 2, idecomp= 0, igb = 5, saltcon= 0.00, gbsa = 2, surften= 1.0, offset = 0.09, extdiel= 78.5, cut = 99999.0, nsnb = 99999, imin = 5, maxcyc = 1, ncyc = 0, /
We can now submit a job to the cluster we are working on. This script, inside a file named run.sander.rescore.csh , is designed for LIRED, however it can be modified for whatever supercomputer you are working on
#! /bin/tcsh #PBS -l nodes=1:ppn=1 #PBS -l walltime=48:00:00 #PBS -o zzz.qsub.out #PBS -e zzz.qsub.err #PBS -V #PBS -N mmgbsa set workdir = /nfs/guest46/amber_tutorial/005.mmgbsa cd $workdir sander -O -i gb.rescore.in \ -o gb.rescore.out.com \ -p ../002.tleap/4TKG.com.gas.leap.prm7 \ -c ../002.tleap/4TKG.com.gas.leap.rst7 \ -y ../004.ptraj/4TKG.com.trj.stripfit \ -r restrt.com \ -ref ../002.tleap/4TKG.com.gas.leap.rst7 \ -x mdcrd.com \ -inf mdinfo.com
sander -O -i gb.rescore.in \ -o gb.rescore.out.lig \ -p ../002.tleap/4TKG.lig.gas.leap.prm7 \ -c ../002.tleap/4TKG.lig.gas.leap.rst7 \ -y ../004.ptraj/4TKG.lig.trj.stripfit \ -r restrt.lig \ -ref ../002.tleap/4TKG.lig.gas.leap.rst7 \ -x mdcrd.lig \ -inf mdinfo.lig sander -O -i gb.rescore.in \ -o gb.rescore.out.test.rec \ -p ../002.tleap/4TKG.rec.gas.leap.prm7 \ -c ../002.tleap/4TKG.rec.gas.leap.rst7 \ -y ../004.ptraj/4TKG.rec.trj.stripfit \ -r restrt.rec \ -ref ../002.tleap/4TKG.rec.gas.leap.rst7 \ -x mdcrd.rec \ -inf mdinfo.rec exit
Then submit the job as a .csh
qsub run.sander.rescore.csh
Your ligand, receptor, and receptor-ligand complex will all have .out files. The format should look
FINAL RESULTS NSTEP ENERGY RMS GMAX NAME NUMBER 1 5.9132E+03 2.0005E+01 1.2640E+02 C 159 BOND = 661.8980 ANGLE = 1751.7992 DIHED = 2581.7692 VDWAALS = -1696.6585 EEL = -13958.9335 EGB = -3125.9524 1-4 VDW = 747.0185 1-4 EEL = 7750.8118 RESTRAINT = 0.0000 ESURF = 11201.4791
minimization completed, ENE= 0.59132314E+04 RMS= 0.200047E+02
We can now use a system of equations to elucidate various energies related to our system. VDWAALS = ΔGvdw E(ELS) = ΔGcoulombic E(GB) = ΔGpolar SASA = ESURF
ΔGnonpolar can be estimated by:
ΔGnonpolar = (Solvent Accessible Surface Area)*0.00542 + 0.92
This equation is based on empirical observations relating a molecules surface area and solvation energy
ΔGnonpolar and ΔGmmgbsa are related by anther equation:
ΔGmmgbsa = ΔGvdw + ΔGcoul + ΔGpolar + ΔGnonpolar
all the information needed is in our output files.
ΔΔGbind can now be solved via the equation:
ΔΔGbind = ΔG(mmgbsa complex) – (ΔG(mmgbsa ligand) + ΔG(mmgbsa receptor) (3)
ΔΔGbind is a function of ligand position, so it is useful to plot it. For publications, it is standard protocol to include the mean and standard deviation for your ΔΔGbind.
Lets make a script named get.mmgbsa.csh to extract this sophisticated energetic estimation from the three initial output files of the calculations obtained solve for ΔΔGbind:
bash get.mmgbsa.csh
The output file will be .dat and we can easily use the program xmgrace to plot the information visually
xmgrace MMGBSA_vs_time.dat