|  |  | 
| Line 261: | Line 261: | 
|  |  |  |  | 
|  | *''Predicting Protein Structure I.''   |  | *''Predicting Protein Structure I.''   | 
|  | + | *''Predicting Protein Structure II.''  | 
|  | #Example Trp-cage |  | #Example Trp-cage | 
| − | *''Predicting Protein Structure II.'' 
 |  | 
|  | #Comparative (homology) modeling   |  | #Comparative (homology) modeling   | 
|  |  |  |  | 
| Line 276: | Line 276: | 
|  |  |  |  | 
|  | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali001.pdf Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. ''Annu. Rev. Biophys. Biomol. Struct.'' '''2000''',''29'',291-325] |  | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali001.pdf Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. ''Annu. Rev. Biophys. Biomol. Struct.'' '''2000''',''29'',291-325] | 
|  | + | || | 
|  |  |  |  | 
| − | ||
 |  | 
|  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Fersht001.pdf Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. ''Nat. Rev. Mol. Cell Biol.'' '''2003''', ''4'', 497-502] |  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Fersht001.pdf Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. ''Nat. Rev. Mol. Cell Biol.'' '''2003''', ''4'', 497-502] | 
|  | + |  | 
|  | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali002.pdf Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. ''Acc. Chem. Res.'' '''2002''', ''35'', 413-21] | 
|  | |- |  | |- | 
|  |  |  |  | 
| Line 285: | Line 287: | 
|  |  |  |  | 
|  | *''Predicting Protein Structure II.''   |  | *''Predicting Protein Structure II.''   | 
| − | :2. Case studies (CASP)
 | + | *''Predicting Protein Structure Part III'' | 
|  | + | #Case studies (CASP) | 
|  | + | #Accelerated MD for Blind Protein Prediction  | 
|  |  |  |  | 
|  | || |  | || | 
|  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.16.AMS535.talk01.pdf last, first  ] |  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.16.AMS535.talk01.pdf last, first  ] | 
|  |  |  |  | 
| − |   | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk02.pdf last, first  ] | 
|  | || |  | || | 
|  |  |  |  | 
| − | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult002.pdf Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. ''Curr. Opin. Struct. Biol.'' '''2005''',''15'', 285-9]
 | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult002.pdf Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. ''Curr. Opin. Struct. Biol.'' '''2005''',''15'', 285-9] | 
|  |  |  |  | 
|  | + | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Dill002.pdf Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. ''Sci. Adv.'' '''2016''', ''2''] | 
|  | || |  | || | 
| − | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Sali002.pdf Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. ''Acc. Chem. Res.'' '''2002''', ''35'', 413-21]
 |  | 
|  |  |  |  | 
| − | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult003.pdf Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. ''Proteins'' '''2005''', ''61 Suppl 7'', 225-36]
 | + |   | 
|  | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Moult003.pdf Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. ''Proteins'' '''2005''', ''61 Suppl 7'', 225-36] | 
|  | |- |  | |- | 
|  |  |  |  | 
| Line 304: | Line 309: | 
|  | | <center>2019.10.14 Wed</center> |  | | <center>2019.10.14 Wed</center> | 
|  | ||   |  | ||   | 
|  | + |  | 
|  | *''Predicting Protein Structure Part III'' |  | *''Predicting Protein Structure Part III'' | 
| − | :1. Accelerated MD for Blind Protein Prediction 
 | + | #MD x-ray refinement   | 
| − | *''Predicting Protein Structure Part III''
 |  | 
| − | :2. MD x-ray refinement
 |  | 
|  |  |  |  | 
|  | || |  | || | 
|  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk01.pdf last, first   ] |  | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk01.pdf last, first   ] | 
| − | 
 |  | 
| − | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2019.10.21.AMS535.talk02.pdf last, first  ]
 |  | 
|  |  |  |  | 
|  | || |  | || | 
| − |   | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger001.pdf Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. ''Acc. Chem. Res.'' '''2002''', ''35'', 404-12] | 
| − | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Dill002.pdf Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. ''Sci. Adv.'' '''2016''', ''2''] |  | 
| − |   |  | 
| − | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger001.pdf Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. ''Acc. Chem. Res.'' '''2002''', ''35'', 404-12]
 |  | 
|  | || |  | || | 
|  |  |  |  | 
| − | 2. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger004.pdf Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. ''Acta Crystallogr D Biol Crystallogr'' '''1999''', ''55'', 181-90]
 | + | 1. [http://ringo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Brunger004.pdf Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. ''Acta Crystallogr D Biol Crystallogr'' '''1999''', ''55'', 181-90] | 
| − |   |  | 
|  | |- |  | |- | 
|  |  |  |  | 
| Date | Topic | Speaker and Presentation | Primary Reference | Secondary Reference | 
| 2019.08.24 Mon |  | - | - | - | 
| 2019.08.26 Wed | SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
 Introduction, history, irrational vs. rationalViral Target Examples
 | Rizzo, R. | 1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8
 2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082
 | - | 
| 2019.08.31 Mon | Molecular structure, bonding, graphical representations Functionality, properties of organic molecules 
 | Rizzo, R. | presentation | - | 
| 2019.09.02 Wed | Lipids, carbohydrates Nucleic acids, proteins  
 | Rizzo, R. | presentation | structures of the 20 amino acid side chains | 
| 2019.09.07 Mon |  | - | - | - | 
| 2019.09.09 Wed | Molecular Interactions and Recognition
 Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive  
 | Rizzo, R. | presentation | - | 
| 2019.09.14 Mon | Intro. to Methods in 3-D Structure Determination
 Crystallography, NMR Structure Quality, PDB in detail 
 | Rizzo, R. | presentation | - | 
| - | - | - | Take home Quiz 1 starts today after Monday's class and must be emailed to all Instructors by 1:00PM Wednesday | - | 
| 2019.09.16 Wed | SECTION II: MOLECULAR MODELING
 All-atom Molecular MechanicsOPLS  
 | 1. last, first 
 2. last, first  
 | 1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604
 2. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236
 | 1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92
 2. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671
 | 
| 2019.09.21 Mon | Classical Force FieldsExplicit Solvent Models
 AMBERWater models (TIP3P, TIP4P, SPC)   
 | 1. last, first  
 2. last, first  
 | 1. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197
 2. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935
 | 1. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280
 | 
| 2019.09.23 Wed | Explicit Solvent ModelsContinuum Solvent Models
 Condensed-phase calculations (DGhydration)Generalized Born Surface Area (GBSA)
 | 1. last, first  
 2. last, first  
 | 1. Jorgensen, W. L.;  et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054
 2. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129
 | - | 
 
| 2019.09.28 Mon | Poisson-Boltzmann Surface Area (PBSA)  Accuracy of partial atomic changes for GBSA and PBSA 
 | 1. last, first 
 2. last, first 
 | 1. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988 
 2.  Rizzo, R. C.; et al., Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. J. Chem. Theory. Comput. 2006, 2, 128-139
 | - | 
| - | - | - | Take home Quiz 2 starts today after Monday's class and must be emailed to all Instructors by 1:00PM Wednesday | - | 
| 2019.09.30 Wed | SECTION III: SAMPLING METHODS
 Molecular ConformationsPrimary Sampling Methods for Computer Simulations
 Small molecules, peptides, relative energy, minimization methodsMolecular dynamics (MD) 
 | 1. last, first  
 2. last, first  
 | 1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75
 2. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9
 | 1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College
 1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84
 | 
| 2019.10.05 Mon | Primary Sampling Methods for Computer SimulationsPredicting Protein Structure I. 
 Monte Carlo (MC)Ab initio prediction (protein-folding) 
 | 1. last, first  
 2. last, first  
 | 1. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.
 1. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513
 2. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19
 | 1. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092
 | 
| 2019.10.07 Wed | Predicting Protein Structure I. Predicting Protein Structure II. 
 Example Trp-cageComparative (homology) modeling 
 | 1. last, first  
 2. last, first 
 | 1. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9
 2. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325
 | 1. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502
 2. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21
 | 
| 2019.10.12 Mon | Predicting Protein Structure II. Predicting Protein Structure Part III
 Case studies (CASP)Accelerated MD for Blind Protein Prediction 
 | 1. last, first  
 2. last, first  
 | 1. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9
 2. Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv. 2016, 2
 | 1. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36
 | 
| 2019.10.14 Wed | Predicting Protein Structure Part III
 MD x-ray refinement 
 | 1. last, first   
 | 1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12
 | 1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90
 | 
| 2019.10.19 Mon | SECTION IV: LEAD DISCOVERY
 1. Introduction to DOCK
 | 1. last, first  
 | 1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619
 | 1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28
 | 
| - | - | - | Take home Quiz 3 starts today after Monday's class and must be emailed to all Instructors by 1:00PM Wednesday | - | 
| 2019.10.21 Wed | 1. Test Sets (binding modes) 
 2. Test Sets (virtual screening)
 | 1. last, first  
 2. last, first   
 | 1. Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Info. Model. 2010, 50, 1986-2000
 2. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82
 | 1. The CCDC/Astex Test Set
 2. ZINC Website at UCSF, Shoichet group
 | 
| 2019.10.26 Mon | 1. Database Enrichment
 2. Footprint-based scoring
 | 1. last, first 
 2. last, first  
 | 1. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801
 2. Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. J. Comput. Chem. 2011, 32, 2273-2289.
 | - | 
| 2019.10.28 Wed | 1. Hotspot probes (GRID) 
 2. COMFA 
 | 1. last, first 
 2. last, first  
 | 1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57
 2. Kubinyi, H., Comparative molecular field analysis (CoMFA). Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998
 | 1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967
 | 
| 2019.11.02 Mon | 1. Pharmacophores in drug design #1
 2. Pharmacophores in drug design #2 
 | 1. last, first  
 2. last, first  
 | 1. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450
 2. Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. Proteins 2003, 51, 172-188 
 | - | 
| 2019.11.04 Wed | 1. De novo design 
 2. Genetic Algorithm 
 | 1. & 2.  Presentation 
 last, first  
 | 1. Cheron, N.; et al., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. J. Med. Chem. 2016, 59, 4171-4188
 2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33
 | - 1. Jorgensen, W.; et al., Efficient drug lead discovery and optimization. Acc. of Chem. Research 2009, 42 (6), 724-733
 | 
| 2019.11.09 Mon | SECTION V: LEAD REFINEMENT
 1. Free Energy Perturbation (FEP)2. Thermolysin with two ligands 
 | 1. last, first  
 | 1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6
 | 1. Jorgensen, W. L., Free Energy Calculations:  A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189
 1. Kollman, P., Free Energy Calculations:  Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417
 | 
| - | - | - | Take home Quiz 4 starts today after Monday's class and must be emailed to all Instructors by 1:00PM Wednesday | - | 
| 2019.11.11 Wed | Thermodynamic integration MM-PB/GBSA
 1. Free energy calculation using TI 2. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods 
 | 1. last, first  
 2. last, first  
 | 1. Labahn, A.; et al., Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. Bioorg Med Chem. 2012, 20, 3446-53
 2. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897
 | 1. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116
 | 
| 2019.11.16 Mon | 1. EGFR and mutants2. ErbB family selectivity 
 | 1. last, first 
 2. last, first 
 | 1. Balius, T.E.; Rizzo, R. C. Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry, 2009, 48, 8435-8448
 2. Huang, Y.; Rizzo, R. C. A Water-based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, Biochemistry, 2012, 51, 2390-2406
 | - | 
| 2019.11.18 Wed | 1. Intro to Linear Response (LR method) 2. Inhibition of protein kinases (Extended LR method) 
 | 1. last, first 
 2. last, first 
 | 1. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81
 2. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549
 | - | 
| 2019.11.23 Mon |  | - | - | - | 
| 2019.11.23 Wed |  | - | - | - | 
| 2019.11.30 Mon | Properties of Known Drugs
 1. Molecular Scaffolds (frameworks) and functionality (side-chains)2. Lipinski Rule of Five
 | 1. last, first 
 2. last, first 
 | 1. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93
 1. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9
 2. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26
 | 2. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6
 | 
| 2019.12.02 Wed |  | - | final_exam_study_guide | - | 
| 2019.12.07 Mon |  | - | final_exam_study_guide
Thermodynamic Cycles
 | - | 
| - | - | - | Take home Quiz 5 starts today after Monday's class and must be emailed to all Instructors by 1:00PM Wednesday | - | 
| - |  | - | No Final Exam in AMS-535/CHE-535 for Fall 2020 | - |