Difference between revisions of "2023 AMBER tutorial 2 with PDBID 3WZE"

From Rizzo_Lab
Jump to: navigation, search
(TLEaP)
(Equilibration)
Line 78: Line 78:
  
 
=='''Equilibration'''==
 
=='''Equilibration'''==
 +
Next, we will minimize and equilibrate the system over nine successive steps. For information about the different parameters see the [https://ambermd.org/doc12/Amber16.pdf AMBER16] manual.
  
 +
Change directory to:
 +
cd 004_equil
 +
The first step is to create the new file:
 +
vi 01.min.md
 +
And insert the following:
 +
Minimize all the hydrogens
 +
&cntrl
 +
  imin=1,          ! Minimize the initial structure
 +
  ntmin=2,          ! Use steepest descent Ryota Added
 +
  maxcyc=5000,      ! Maximum number of cycles for minimization
 +
  ntb=1,            ! Constant volume
 +
  ntp=0,            ! No pressure scaling
 +
  ntf=1,            ! Complete force evaluation
 +
  ntwx= 1000,      ! Write to trajectory file every ntwx steps
 +
  ntpr= 1000,      ! Print to mdout every ntpr steps
 +
  ntwr= 1000,      ! Write a restart file every ntwr steps
 +
  cut=  8.0,        ! Nonbonded cutoff in Angstroms
 +
  ntr=1,            ! Turn on restraints
 +
  restraintmask="!@H=", ! atoms to be restrained
 +
  restraint_wt=5.0, ! force constant for restraint
 +
  ntxo=1,          ! Write coordinate file in ASCII format
 +
  ioutfm=0,        ! Write trajectory file in ASCII format
 +
/
 +
You'll want to pay close attention to the restraint mask - it lifts in later steps.
  
 
=='''Production'''==
 
=='''Production'''==

Revision as of 08:17, 6 May 2023

Introduction

Directory Setup

As always, we set up folders to keep us organized as we move generate files:

mkdir 001_structure
mkdir 002_parameters
mkdir 003_leap
mkdir 004_equil
mkdir 005_production

3WZE Structures

Receptor

Ligand

Amber Simulation Parameters

To generate parameters for the simulation, we must implement the following:

antechamber -i ../001_structure/3wze_lig_wH.mol2 -fi mol2 -o 3wze_ligand_antechamber.mol2 -fo mol2 -at gaff2 -c bcc -rn LIG -nc 0

nc = 0 because the charge on the ligand is 0. If your ligand is non-zero, enter the appropriate charge at the end of this line. It may be helpful to check the protonation state of the ligand at pH 7. Once 3wze_ligand_antechamber.mol2 output file is generated, run parmch2:

parmchk2 -i 3wze_ligand_antechamber.mol2 -f mol2 -o 3wze_ligand.am1bcc.frcmod

TLEaP

Next we will generate the AMBER topology file and coordinate files. Switch to the directory:

vi leap.in

Two types of files will be generated, parm7 (topology) and rst7 (coordinates). Create the input file:

vi leap.in

And then input the following (make sure you change the username):

   #!/USERNAME/bin/sh 
   ###load protein force field
   source leaprc.protein.ff14SB
   ###load GAFF force field (for our ligand)
   source leaprc.gaff
   ###load TIP3P (water) force field
   source leaprc.water.tip3p
   ###load ions frcmod for the tip3p model 
   loadamberparams frcmod.ionsjc_tip3p
   ###needed so we can use igb=8 model 
   set default PBradii mbondi3
   ###load protein pdb file 
   rec=loadpdb ../000_structure/3wze_rec.pdb
   ##@make disulfide bond
   ###load ligand frcmod/mol2
   loadamberparams ../000_structure/3wze_ligand.am1bcc.frcmod  
   lig=loadmol2 ../000_structure/3wze_ligand_antechamber.mol2
   ###create gase-phase complex
   gascomplex= combine {rec lig}
   ###write gas-phase pdb
   savepdb gascomplex 3wze.gas.complex.pdb
   ###write gas-phase toplogy and coord files for MMGBSA calc
   saveamberparm gascomplex 3wze.complex.parm7 3wze.gas.complex.rst7
   saveamberparm rec 3wze.gas.receptor.parm7 3wze.gas.receptor.rst7
   saveamberparm lig 3wze.gas.ligand.parm7 3wze.gas.ligand.rst7
   ###create solvated complex (albeit redundant)
   solvcomplex= combine {rec lig}
   ###solvate the system
   solvateoct solvcomplex TIP3PBOX 12.0
   ###Neutralize system
   addions solvcomplex Cl- 0
   addions solvcomplex Na+ 0
   #write solvated pdb file
   savepdb solvcomplex 3wze.wet.complex.pdb
   ###check the system
   charge solvcomplex 
   check solvcomplex
   ###write solvated toplogy and coordinate file
   saveamberparm solvcomplex 3wze.wet.complex.parm7 3wze.wet.complex.rst7
   quit

Once the files are generated, transfer the parm7 and rst7 files to the local environment. You can run them in Chimera to check the build. Open the protein, then open TOOLS--MD/ENSEMBLE ANALYSIS--MD MOVIE. Open the parm7 in prmtop box and then add the rst7 as a trajectory. Then click OK.

Equilibration

Next, we will minimize and equilibrate the system over nine successive steps. For information about the different parameters see the AMBER16 manual.

Change directory to:

cd 004_equil

The first step is to create the new file:

vi 01.min.md

And insert the following: Minimize all the hydrogens

&cntrl
 imin=1,           ! Minimize the initial structure
 ntmin=2,          ! Use steepest descent Ryota Added
 maxcyc=5000,      ! Maximum number of cycles for minimization
 ntb=1,            ! Constant volume
 ntp=0,            ! No pressure scaling
 ntf=1,            ! Complete force evaluation
 ntwx= 1000,       ! Write to trajectory file every ntwx steps
 ntpr= 1000,       ! Print to mdout every ntpr steps
 ntwr= 1000,       ! Write a restart file every ntwr steps
 cut=  8.0,        ! Nonbonded cutoff in Angstroms
 ntr=1,            ! Turn on restraints
 restraintmask="!@H=", ! atoms to be restrained
 restraint_wt=5.0, ! force constant for restraint
 ntxo=1,           ! Write coordinate file in ASCII format
 ioutfm=0,         ! Write trajectory file in ASCII format
/

You'll want to pay close attention to the restraint mask - it lifts in later steps.

Production

MD Analysis

RMSD

Hydrogen Bonding

MM-GBSA