|   |   | 
| Line 41: | Line 41: | 
|  | #Introduction, history, irrational vs. rational |  | #Introduction, history, irrational vs. rational | 
|  | #Viral Target Examples |  | #Viral Target Examples | 
| − | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2011.09.07.ams535.rizzo.lect.001.pdf Rizzo, R.] | + | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2012.08.29.ams535.rizzo.lect.001.pdf Rizzo, R.] | 
|  | || |  | || | 
|  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8] |  | 1. [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/Jorgensen009.pdf Jorgensen, W.L., The many roles of computation in drug discovery. ''Science'' '''2004''', ''303'', 1813-8] | 
| Line 64: | Line 64: | 
|  | #Molecular structure, bonding, graphical representations   |  | #Molecular structure, bonding, graphical representations   | 
|  | #Functionality, properties of organic molecules   |  | #Functionality, properties of organic molecules   | 
| − | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2011.09.12.ams535.rizzo.lect.002.pdf Rizzo, R.] | + | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2012.09.05.ams535.rizzo.lect.002.pdf Rizzo, R.] | 
|  | || <center>presentation</center> |  | || <center>presentation</center> | 
|  | || <center>-</center> |  | || <center>-</center> | 
| Line 74: | Line 74: | 
|  | #Lipids, carbohydrates   |  | #Lipids, carbohydrates   | 
|  | #Nucleic acids, proteins    |  | #Nucleic acids, proteins    | 
| − | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2011.09.14.ams535.rizzo.lect.003.pdf Rizzo, R.] | + | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2012.09.10.ams535.rizzo.lect.003.pdf Rizzo, R.] | 
|  | || <center>presentation</center> |  | || <center>presentation</center> | 
|  | || [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains] |  | || [http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/References/2010.amino_acids_scanned.pdf structures of the 20 amino acid side chains] | 
| Line 84: | Line 84: | 
|  | #Electrostastics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)   |  | #Electrostastics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)   | 
|  | #Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive    |  | #Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive    | 
| − | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2011.09.19.ams535.rizzo.lect.004.pdf Rizzo, R.] | + | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2012.09.12.ams535.rizzo.lect.004.pdf Rizzo, R.] | 
|  | || <center>presentation</center> |  | || <center>presentation</center> | 
|  | || <center>-</center> |  | || <center>-</center> | 
| Line 94: | Line 94: | 
|  | #Crystallography, NMR   |  | #Crystallography, NMR   | 
|  | #Structure Quality, PDB in detail   |  | #Structure Quality, PDB in detail   | 
| − | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2011.09.21.ams535.rizzo.lect.005.pdf Rizzo, R.] | + | ||[http://rizzo.ams.sunysb.edu/~rizzo/StonyBrook/teaching/AMS532_AMS535_AMS536/Presentations/2012.09.17.ams535.rizzo.lect.005.pdf Rizzo, R.] | 
|  | || <center>presentation</center> |  | || <center>presentation</center> | 
|  | || <center>-</center> |  | || <center>-</center> | 
| Date | Topic | Speaker and Presentation | Primary Reference | Secondary Reference | 
| 2012.08.27 Mon |  | - | - | - | 
| 2012.08.29 Wed | SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
 Introduction, history, irrational vs. rationalViral Target Examples
 | Rizzo, R. | 1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8
 2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082
 | - | 
| 2012.09.03 Mon |  | - | - | - | 
| 2012.09.05 Wed | Molecular structure, bonding, graphical representations Functionality, properties of organic molecules 
 | Rizzo, R. | presentation | - | 
| 2012.09.10 Mon | Lipids, carbohydrates Nucleic acids, proteins  
 | Rizzo, R. | presentation | structures of the 20 amino acid side chains | 
| 2012.09.12 Wed | Molecular Interactions and Recognition
 Electrostastics, VDW interactions, hydrophobic effect, molecular recognition (binding energy) Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive  
 | Rizzo, R. | presentation | - | 
| 2012.09.17 Mon | Intro. to Methods in 3-D Structure Determination
 Crystallography, NMR Structure Quality, PDB in detail 
 | Rizzo, R. | presentation | - | 
| 2012.09.19 Wed | Quiz Prior Section I SECTION II: MOLECULAR MODELING
 All-atom Molecular Mechanics 
 | Guest Lecture
 Balius, T.
 | 1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604
 | 1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92
 | 
| 2012.09.24 Mon | OPLS AMBER  
 | 1. Gan, Q. 
 2. Boyd, R. 
 | 1. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236
 2. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197
 | 1. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671
 2. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280
 | 
| 2012.09.26 Wed | Water models (TIP3P, TIP4P, SPC) Condensed-phase calculations (DGhydration)
 | 1. Adewale, B.
 2. Choi,W.
 
 | 1. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935
 2. Jorgensen, W. L.;  et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054
 | - | 
 
| 2012.10.01 Mon | Generalized Born Surface Area (GBSA)Poisson-Boltzmann Surface Area (PBSA)  
 | 1. Hwang, G.
 2. Groeneveld, K.
 | 1. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129
 2. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988 
 | - | 
| 2012.10.03 Wed | Quiz Prior Section II SECTION III: SAMPLING METHODS
 Small molecules, peptides, relative energy, minimization methods
 | 1. Kazi, R.
 | 1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75
 | 1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College
 1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84
 | 
| 2012.10.08 Mon | Primary Sampling Methods for Computer Simulations
 Molecular dynamics (MD) Monte Carlo (MC)
 | 1. Chen,J.
 2. Kim, E
 | 1. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9
 2. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.
 2. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513
 | 2. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092
 | 
| 2012.10.10 Wed | Predicting Protein Structure I. 
 Ab initio prediction (protein-folding) Example Trp-cage
 | 1. Klaritch-Vrana, B.
 2. Lazo, E.
 | 1. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19
 2. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9
 | 1-2. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502
 | 
| 2012.10.15 Mon | Predicting Protein Structure II. 
 Comparative (homology) modeling Case studies (CASP)
 | 1.Guest Lecture
 Huang,Y.
 2. Santa Cruz, A.
 | 1. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325
 2. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9
 | 1. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21
 2. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36
 | 
| 2012.10.17 Wed | Enhanced Sampling Techniques
 Simulated annealing Protein Design 
 | 1.Guja, K.
 2.Guest Lecture
 Au, L.
 | 1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12
 2. Street, A. G.; Mayo, S. L., Computational protein design. Structure. 1999, 7, 105-9
 | 1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90
 2. Lippow, S. M.; Tidor, B., Progress in computational protein design. Curr. Opin. Biotechnol. 2007, 18, 305-311
 | 
| 2012.10.22 Mon | Quiz Prior Section III SECTION IV: LEAD DISCOVERY
 Introduction to DOCKIntroduction to Virtual Screening
 | Guest Lecture
 Mukherjee, S.
 | 1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619
 2. Klebe, G.; et al., Virtual ligand screening: strategies, perspectives and limitations. Drug. Disc. Today. 2006, 11, 580-595
 | 1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28
 | 
| 2012.10.24 Wed | Hotspot probes (GRID) COMFA 
 | 1.Wei, L.
 2. Shi, H.
 | 1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57
 2. Kubinyi, H., Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998
 | 1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967
 | 
| 2012.10.29 Mon | Pharmacaphores in drug design #1Pharmacaphores in drug design #2 
 | Guest Lecture Jiang, L.
 | 1. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450
 2. Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. Proteins 2003, 51, 172-188 
 | - | 
| 2012.10.31 Wed | De novo design #1De novo design #2
 | Guest Lecture Allen, W.
 | 1. Jorgensen, W.; et al., Efficient drug lead discovery and optimization. Acc. of Chem. Research 2009, 42 (6), 724-733
 2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33
 | - | 
| 2012.11.05 Mon | Test Sets (binding modes) Test Sets (virtual screening)
 | Guest Lecture
 Mukherjee, S.
 | 1. Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Info. Model. 2010, 50, 1986-2000
 2. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82
 | 1. The CCDC/Astex Test Set
 2. ZINC Website at UCSF, Shoichet group
 | 
| 2012.11.07 Wed | Database EnrichmentFootprint-based scoring
 | 1. Guest Lecture Balius, T.
 | 1. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801
 1. Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. J. Comput. Chem. 2011, 32, 2273-2289.
 | - | 
| 2012.11.12 Mon | Quiz Prior Section IV SECTION V: LEAD REFINEMENT
 Free Energy Perturbation (FEP)
 Thermolysin with two ligands 
 | 1. Sin, J.
 | 1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6
 | 1. Jorgensen, W. L., Free Energy Calculations:  A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189
 1. Kollman, P., Free Energy Calculations:  Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417
 | 
| 2012.11.14 Wed | Thermodynamic integration MM-PB/GBSA
 H5N1 Avian influenza N1-PVR Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods 
 | 1. Guest Lecture Jiang, L., 
 2. Guest Lecture Huang,Y. 
 | 1. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116
 2. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897
 | - | 
| 2012.11.19 Mon | TI and MM-GBSAHIVgp41 
 | 1. Sinayev, R.
 2. Wong, A.
 | 1. Cai, Y.; Schiffer, C. A.; Decomposing the Energetic Impact of Drug Resistant Mutations in HIV-1 Protease on Binding DRV. J. Chem. Theory Comput. 2010, 6, 1358-1368
 2. Strockbine, B.; Rizzo, R. C., Binding of Anti-fusion Peptides with HIVgp41 from Molecular Dynamics Simulations: Quantitative Correlation with Experiment. Prot. Struct. Funct. Bioinformatics 2007, 63, 630-642
 | - | 
| 2012.11.21 Wed | No Class: Thanksgiving US
 | - | - | - | 
| 2012.11.26 Mon | Intro to Linear Response (LR method) Inhibition of protein kinases (Extended LR method) 
 | 1. Xia, Y.
 2. Yeasmin, R.
 | 1. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81
 2. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549
 | - | 
| 2012.11.28 Wed | Properties of Known Drugs
 Lipinski Rule of FiveADME prediction
 | 1. Yuan, X.
 2. Zhou, Y.
 
 | 1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26
 2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349
 
 | 1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6
 2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152
 | 
| 2012.12.03 Mon | Final Exam Study Guide Handout
 | 1. Jiang, L.
 | 1. final_exam_study_guide
 | - | 
| 2012.12.05 Wed | Final Exam Study Guide Handout
 | 1. Jiang, L.
 | 1. final_exam_study_guide
 | last day of class | 
| 2012.12.11 Tue | FINAL EXAM
Tuesday
8:30-11:00PM | - | NOTE: Unless otherwise noted the Final will be given in our regular class room.
 It is the student’s responsibility to plan a class schedule that avoids exam conflicts and too many exams in the same day. 
 FINAL EXAM IS CUMULATIVE
 | - |