Difference between revisions of "2016 AMBER tutorial with Thrombin"
(→PMEMD) |
(→Ptraj) |
||
Line 18: | Line 18: | ||
===Ptraj=== | ===Ptraj=== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===MM-GBSA Energy Calculation=== | ===MM-GBSA Energy Calculation=== |
Revision as of 13:13, 6 April 2016
For additional Rizzo Lab tutorials see AMBER Tutorials.
In this tutorial, we will learn how to run a molecular dynamics simulation of a protein-ligand complex. We will then post-process that simulation by calculating structural fluctuations (with RMSD) and free energies of binding (MM-GBSA).
Contents
I. Introduction
II. Structural Preparation
Antechamber, Parmchk, tLeap
III. Simulation using pmemd
PMEMD
IV. Simulation Analysis
Ptraj
MM-GBSA Energy Calculation
Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) is a great method to calculate or estimate relative binding affinity of a ligand(s) to a receptor. The binding energy calculated from this method are also known as free energies of binding, where the more negative values indicate stronger binding. For this section, the topology files for the ligand, receptor and complex are needed.
Create a new directory:
mkdir 005.MMGBSA
Create an input file name
vim gb.rescore.in
Enter the following into the input file:
Single point GB energy calc &cntrl ntf = 1, ntb = 0, ntc = 2, idecomp= 0, igb = 5, saltcon= 0.00, gbsa = 2, surften= 1.0, offset = 0.09, extdiel= 78.5, cut = 99999.0, nsnb = 99999, imin = 5, maxcyc = 1, ncyc = 0, /
Create a tcsh/bash/csh script (run.sander.rescore.csh) with the following information:
#! /bin/tcsh #PBS -l nodes=1:ppn=1 #PBS -l walltime=48:00:00 #PBS -o zzz.qsub.out #PBS -e zzz.qsub.err #PBS -V #PBS -N mmgbsa set workdir = /nfs/user03/kbelfon/amber_tutorial/005.mmgbsa cd $workdir sander -O -i gb.rescore.in \ -o gb.rescore.out.com \ -p ../002.tleap/4TKG.com.gas.leap.prm7 \ -c ../002.tleap/4TKG.com.gas.leap.rst7 \ -y ../004.ptraj/4TKG.com.trj.stripfit \ -r restrt.com \ -ref ../002.tleap/4TKG.com.gas.leap.rst7 \ -x mdcrd.com \ -inf mdinfo.com sander -O -i gb.rescore.in \ -o gb.rescore.out.lig \ -p ../002.tleap/4TKG.lig.gas.leap.prm7 \ -c ../002.tleap/4TKG.lig.gas.leap.rst7 \ -y ../004.ptraj/4TKG.lig.trj.stripfit \ -r restrt.lig \ -ref ../002.tleap/4TKG.lig.gas.leap.rst7 \ -x mdcrd.lig \ -inf mdinfo.lig sander -O -i gb.rescore.in \ -o gb.rescore.out.test.rec \ -p ../002.tleap/4TKG.rec.gas.leap.prm7 \ -c ../002.tleap/4TKG.rec.gas.leap.rst7 \ -y ../004.ptraj/4TKG.rec.trj.stripfit \ -r restrt.rec \ -ref ../002.tleap/4TKG.rec.gas.leap.rst7 \ -x mdcrd.rec \ -inf mdinfo.rec exit
Execute this script on the seawulf cluster or machine(s) of your preference
qsub run.sander.rescore.csh
Three output files will be generated once the job is completed: gb.rescore.out.com, gb.rescore.out.lig, and gb.rescore.out.rec These files represent the single point energy calculation results for the complex (.com), the ligand (.lig) and the receptor (.rec). The energy will be output by the program Sander for each frame specified in the input file. The final results for one frame in one of the three files should look as the following:
FINAL RESULTS NSTEP ENERGY RMS GMAX NAME NUMBER 1 5.9132E+03 2.0005E+01 1.2640E+02 C 159 BOND = 661.8980 ANGLE = 1751.7992 DIHED = 2581.7692 VDWAALS = -1696.6585 EEL = -13958.9335 EGB = -3125.9524 1-4 VDW = 747.0185 1-4 EEL = 7750.8118 RESTRAINT = 0.0000 ESURF = 11201.4791 minimization completed, ENE= 0.59132314E+04 RMS= 0.200047E+02
Extracting Data from MM-GBSA calculation and calculating Free energy of Binding From the output files above:
VDWAALS = ΔGvdw
EELS = ΔGcoul
EGB = ΔGpolar
SASA = ESURF
With this information ΔGnonpolar can be solved using equation(1):
ΔGnonpolar = SASA*0.00542 + 0.92 (1)
Once ΔGnonpolar is solved then ΔGmmgbsa can be determined by equation(2):
ΔGmmgbsa = ΔGvdw + ΔGcoul + ΔGpolar + ΔGnonpolar (2)
Solve equation 2 and 3 using the extracted information from all three output files. So therefore you should have ΔGmmgbsa for the complex, ligand and receptor
Finally ΔΔGbind can be calculated using equation (3):
ΔΔGbind = ΔGmmgbsa,complex – (ΔGmmgbsa,lig + ΔGmmgbsa,rec) (3)
Plot your ΔΔGbind and examine the plot for changes in the ligand position and the ΔΔGbind. Also, you should calculate the mean and standard deviation for your ΔΔGbind.
The following script (get.mmgbsa.sh) can be used to extract the energy from the three output files obtained above and calculate ΔΔGbind:
#! /bin/bash # by Haoquan echo com lig rec > namelist LIST=`cat namelist` for i in $LIST ; do grep VDWAALS gb.rescore.out.$i | awk '{print $3}' > $i.vdw grep EGB gb.rescore.out.$i | awk '{print $9}' > $i.polar grep EELS gb.rescore.out.$i | awk '{print $6}' > $i.coul grep ESURF gb.rescore.out.$i | awk '{print $3 * 0.00542 + 0.92}' > $i.surf paste -d " " $i.vdw $i.polar $i.surf $i.coul | awk '{print $1 + $2 + $3 + $4}' > data.$i rm $i.* done paste -d " " data.com data.lig data.rec | awk '{print $1 - $2 - $3}' > data.all for ((j=1; j<=`wc -l data.all | awk '{print $1}'`; j+=1)) do echo $j , >> time done paste -d " " time data.all > MMGBSA_vs_time.dat rm namelist time data.*
Execute this script:
bash get.mmgbsa.sh
A text file called MMGBSA_vs_time.dat with x and y values separated by a space and comma should be created. Use XMGRACE to plot this dat file using the following command in Linux:
xmgrace MMGBSA_vs_time.dat