2021 DOCK tutorial 2 with PDBID 2ZD1
Introduction
Learning Goals for this Tutorial
This tutorial will allow the student to perform a virtual screen of a large number of ligands to a protein receptor target through the use of molecular docking. The student will additionally learn how to visualize the reference receptor-ligand complex along with the resulting ligand poses docked within the receptor.
The techniques, computational tools, and biological system used in this tutorial are detailed below:
Techniques
Virtual Screening vf
Molecular Docking
The DOCKING program specifically computes the interaction energy between the receptor and candidate ligand at different orientations. The ligand with the highest activity (usually the ideal candidate for a synthetic ligand or drug) would have the lowest computed energy.
Docking algorithms can be broadly classified as flexible (anchor and grow) or
rigid. A rigid docking algorithm begins with a fully-formed ligand (whose structure
is obtained from experiment) and allows for sampling of the rigid placement of
the given experimental pose in the binding site of the receptor while varying the
translational and rotational degrees of freedom of the whole ligand within the
three spatial dimensions. Internal angle rotational degrees of freedom are not
explicitly sampled with basic rigid docking.
Traditional flexible docking starts with a ligand scaffold, which is usually the
largest substructure in a ligand, identified as such after the molecule is divided
into substructures at its rotatable bonds. By a chosen method, such as Monte
Carlo sampling or simulated annealing, multiple poses of this “anchor”
substructure are then generated within the receptor binding pocket and scored.
The next substructure’s layers of atoms are then added to the most favorable
subset of initial anchor poses, and the process repeats until all the molecule is
fully rebuilt within the receptor. This on-the-fly flexible conformer growth and
minimization process is known as “anchor and grow.”
'Conformal space search' A sequence of complexes of receptors and ligands in specific poses are constructed for subsequent evaluation by a set of scoring functions.
Scoring'
Docking Assessment
Tools and Platforms
Protein DataBank https://www.rcsb.org/structure/2zd1
Chimera https://www.cgl.ucsf.edu/chimera/
Seawulf
https://it.stonybrook.edu/help/kb/understanding-seawulf
DOCK 6.9 is one of the many tools available to computational biologists that predicts ligand binding geometries and interactions. The functions of DOCK 6.9 are diverse and have several general applications. A primary use of the program involves a virtual screening of thousands of molecules for an intended purpose. These purposes can include database screenings for molecules that inhibit enzyme activity, bind a particular protein, or even bind to larger complexes. As more versions of the program are released, new features are added such as the inclusion of solvation and receptor flexibility considerations in its calculations.
2ZD1: Crystal Structure of HIV-1 Reverse Transcriptase (RT) in Complex with TMC278 (Rilpivirine), A Non-nucleoside RT Inhibitor
2ZD1 is the PDB code for the catalytic complex between human HMG-CoA reductase (HMGR) and Simvastatin. HMGR is considered a rate-controlling enzyme in the metabolic pathway responsible for the biosynthesis of cholesterol. Inhibitors of HMGR, known as statins, are often prescribed as treatment therapies for high cholesterol patients. While statins inhibit the catalytic effect of HMGR, they also provide other positive biochemical effects such as the stimulation of bone growth and anti-inflammatory responses. Studying statin binding using this complex can potentially aid in the discovery of drugs capable of producing these off-target effects.
Directory and File Setup
Before begining the actual docking procedure, we will create a set of directories to store the various files we will be generating in an organized manner. We will also download the initial PDB file for the 2ZD1 complex from the RCSB PDB.
Note: The nomenclature used below is not required but is recommended for most efficient use of the tutorial.
- Navigate to your personal student directory for AMS 536:
cd /gpfs/projects/AMS536/year/students/name
- Create a directory to store all files used and generated in this tutorial:
mkdir dock_vs_pdbcode
- Navigate into this new directory:
cd dock_vs_pdbcode
- Create all the directories require for this tutorial:
mkdir 01_structure 02_surface_spheres 03_gridbox 04_dock 05_virtual_screen 06_virtual_screen_mpi 07_cartesianmin 08_rescore
- Download the PDB file to a local directory
- Copy the PDB file to
01_structure
usingscp
orrsync
It is recommended that you confirm the existence of all newly-created directories by executing the ls
command.
Receptor and Ligand Preparation
We will exract the individual receptor and ligand structure from our PDB file and add hydrogens and charges where appropriate.
Structure Verification
We will verify that the protein structure downloaded from the PDB aligns with the description in the submitted experimental paper.
- Open the Chimera application
- Open the PDB file in Chimera:
file -> open, navigate to PDB file and select open
You should now be able to visualize the complex as shown below
- Begin to prepare the receptor by deleting all the non-receptor atoms. This also includes delete any chains in the receptor that are not of interest and or do not coordinate with the ligand.
Select -> Chain -> (Undesired chain) Actions -> Atoms/Bonds -> Delete.
Select -> Residue -> All-nonstandard Actions -> Atoms/Bonds -> Delete.
- Save the prepared receptor locally in .mol2 format.
File -> Save mol2... -> "2ZD1_rec_nH.mol2"
- Copy the mol2 file to
01_structure
usingscp or rsync
Note that the file that we created does not contain any hydrogen atoms, we will now save a second receptor file with hydrogens and charge added to the molecule.
Select -> Chain -> (Undesired chain)
Actions -> Atoms/Bonds -> Delete.
<p> Select -> Residue -> All-nonstandard
Actions -> Atoms/Bonds -> Delete.
File -> Save mol2... -> "2ZD1_rec_nH.mol2"
Copy the mol2 file to <code> 01_structure
using scp or rsync
</ol>