As a result of the COVID-19 outbreak this course is being offered online. This is a mixed course meaning that there will be both synchronous and asynchronous aspects. Note that course grading criteria has been modified from previous years (see grading breakdown above). Other details for this semester are as follows:
Date
|
Topic
|
Speaker and Presentation
|
Primary Reference
|
Secondary Reference
|
2019.08.24 Mon
|
|
-
|
-
|
-
|
2019.08.26 Wed
|
SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE
- 1. Introduction, history, irrational vs. rational
- 2. Viral Target Examples
|
Rizzo, R.
|
1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8
2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082
|
-
|
2019.08.31 Mon
|
- 1. Molecular structure, bonding, graphical representations
- 2. Functionality, properties of organic molecules
|
Rizzo, R.
|
presentation
|
-
|
2019.09.02 Wed
|
- 1. Lipids, carbohydrates
- 2. Nucleic acids, proteins
|
Rizzo, R.
|
presentation
|
structures of the 20 amino acid side chains
|
2019.09.07 Mon
|
|
-
|
-
|
-
|
2019.09.09 Wed
|
- Molecular Interactions and Recognition
- 1. Electrostatics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
- 2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive
|
Rizzo, R.
|
presentation
|
-
|
2019.09.14 Mon
|
- Intro. to Methods in 3-D Structure Determination
- 1. Crystallography, NMR
- 2. Structure Quality, PDB in detail
|
Rizzo, R.
|
presentation
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 1 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.09.16 Wed
|
SECTION II: MOLECULAR MODELING
- 1. All-atom Molecular Mechanics
- 2. OPLS
|
1. last, first
2. last, first
|
1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604
2. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236
|
1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92
2. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671
|
2019.09.21 Mon
|
- 1. AMBER
- 2. Water models (TIP3P, TIP4P, SPC)
|
1. last, first
2. last, first
|
1. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197
2. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935
|
1. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280
|
2019.09.23 Wed
|
- 1. Condensed-phase calculations (DGhydration)
- 2. Generalized Born Surface Area (GBSA)
|
1. last, first
2. last, first
|
1. Jorgensen, W. L.; et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054
2. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129
|
-
|
2019.09.28 Mon
|
- 1. Poisson-Boltzmann Surface Area (PBSA)
- 2. Accuracy of partial atomic changes for GBSA and PBSA
|
1. last, first
2. last, first
|
1. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988
2. Rizzo, R. C.; et al., Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. J. Chem. Theory. Comput. 2006, 2, 128-139
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 2 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.09.30 Wed
|
SECTION III: SAMPLING METHODS
- 1. Small molecules, peptides, relative energy, minimization methods
- Sampling Methods for Large Simulations
- 2. Molecular dynamics (MD)
|
1. last, first
2. last, first
|
1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75
2. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9
|
1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College
1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84
|
2019.10.05 Mon
|
- Sampling Methods for Large Simulations
- 1. Monte Carlo (MC)
- Predicting Protein Structure
- 2. Ab initio structure prediction (protein-folding)
|
1. last, first
2. last, first
|
1. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.
1. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513
2. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19
|
1. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092
|
2019.10.07 Wed
|
- Predicting Protein Structure
- 1. Example Trp-cage
- 2. Comparative (homology) modeling
|
1. last, first
2. last, first
|
1. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9
2. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325
|
1. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502
2. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21
|
2019.10.12 Mon
|
- Predicting Protein Structure
- 1. Case studies (CASP)
- 2. Accelerated MD for Blind Protein Prediction
|
1. last, first
2. last, first
|
1. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9
2. Perez, A.; et al., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv. 2016, 2
|
1. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36
|
2019.10.14 Wed
|
- Predicting Protein Structure
- 1. MD x-ray refinement
- 2. Protein Design
|
1. last, first
2. last, first
|
1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12
1. Kuhlman, A. T.;et al, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 2003, 302, 1364-1368
|
1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90
|
-
|
-
|
-
|
Take home QUIZ for Section 3 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.10.19 Mon
|
SECTION IV: LEAD DISCOVERY
- 1. Introduction to DOCK
- 2. Test Sets (pose reproduction)
|
1. last, first
2. last, first
|
1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619
2. Mukherjee, S.; et al., Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J. Chem. Info. Model. 2010, 50, 1986-2000
|
1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28
2. The CCDC/Astex Test Set
|
2019.10.21 Wed
|
- 1. Test Sets (virtual screening)
- 2. Test Sets (database enrichment)
|
1. last, first
2. last, first
|
1. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82
2. Huang, N.; et al., Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49(23), 6789-6801
|
1. ZINC Website at UCSF, Shoichet group
|
2019.10.26 Mon
|
- 1. Footprint-based scoring
- 2. Hotspot probes (GRID)
|
1. last, first
2. last, first
|
1. Balius, T.E.; et al., Implementation and Evaluation of a Docking-Rescoring Method Using Molecular Footprint Comparisons. J. Comput. Chem. 2011, 32, 2273-2289.
1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57
|
-
|
2019.10.28 Wed
|
- 1. COMFA
- 2 Pharmacophores
|
1. last, first
2. last, first
|
1. Kubinyi, H., Comparative molecular field analysis (CoMFA). Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998
2. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450
|
1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967
|
2019.11.02 Mon
|
- 1. Pharmacophores
- 2. De novo design
|
1. last, first
2. last, first
|
1. Alvarez, J.; et al., Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility. Proteins 2003, 51, 172-188
2. Cheron, N.; et al., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. J. Med. Chem. 2016, 59, 4171-4188
|
-
|
2019.11.04 Wed
|
- 1. De novo design
- 2. Genetic Algorithm
|
1. last, first
2. last, first
|
1. Jorgensen, W.; et al., Efficient drug lead discovery and optimization. Acc. of Chem. Research 2009, 42 (6), 724-733
2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 4 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
2019.11.09 Mon
|
SECTION V: LEAD REFINEMENT
- 1. Thermolysin with two ligands (FEP)
- 2. Fatty acid synthase I ligands (TI)
|
1. last, first
2. last, first
|
1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6
2. Labahn, A.; et al., Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. Bioorg Med Chem. 2012, 20, 3446-53
|
1&2. Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189
1&2. Kollman, P., Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417
2. Lawrenz, M.; et al., Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 2009, 5, 1106-1116
|
2019.11.11 Wed
|
- 1. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods
- 2. EGFR and mutants
|
1. last, first
2. last, first
|
1. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897
2. Balius, T.E.; Rizzo, R. C. Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry, 2009, 48, 8435-8448
|
|
2019.11.16 Mon
|
- 1. ErbB family selectivity
- 2. Intro to Linear Response (LR method)
|
1. last, first
2. last, first
|
1. Huang, Y.; Rizzo, R. C. A Water-based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, Biochemistry, 2012, 51, 2390-2406
2. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81
|
-
|
2019.11.18 Wed
|
- 1. Inhibition of protein kinases (Extended LR method)
- Properties of Known Drugs
- 2. Molecular Scaffolds (frameworks) and functionality (side-chains
|
1. last, first
2. last, first
|
1. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549
2. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93
2. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9
|
-
|
2019.11.23 Mon
|
|
-
|
-
|
-
|
2019.11.23 Wed
|
|
-
|
-
|
-
|
2019.11.30 Mon
|
- Properties of Known Drugs
- 1. Lipinski Rule of Five
- 2 ADME Prediction
|
1. last, first
2. last, first
|
1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26
2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349
|
1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6
2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152
|
2019.12.02 Wed
|
|
-
|
-
|
-
|
2019.12.07 Mon
|
|
-
|
-
|
-
|
-
|
-
|
-
|
Take home QUIZ for Section 5 starts after today's class (4:00PM) and must be emailed to all Instructors within 24 hours (4:00PM tomorrow)
|
-
|
-
|
|
-
|
No Final Exam in AMS-535/CHE-535 for Fall 2020
|
-
|