2010 AMS-535 Fall

From Rizzo_Lab
Revision as of 16:22, 27 August 2010 by Lingling (talk | contribs) (Course Participants, Topics, References, and Schedule)
Jump to: navigation, search

Past Announcements

Current Announcements

  • Posted on 08/27/2010 by Lingling
  1. First class on 08/30, Monday

Example Quiz/Exam Questions from Prior Semesters

example.questions.pdf

Course Participants, Topics, References, and Schedule

Date
Topic
Speaker and Presentation
Primary Reference
Secondary Reference
2010.08.30 Mon
  • Organizational Meeting
-
-
-
2010.09.01 Wed

SECTION I: DRUG DISCOVERY AND BIOMOLECULAR STRUCTURE

  • Drug Discovery
  1. Introduction, history, irrational vs. rational
  2. Viral Target Examples
Rizzo, R.

1. Jorgensen, W.L., The many roles of computation in drug discovery. Science 2004, 303, 1813-8

2. Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082

-
2010.09.06 Mon
  • No Class: Labor Day
-
-
-
2010.09.08 Wed
  • Chemistry Review
  1. Molecular structure, bonding, graphical representations
  2. Functionality, properties of organic molecules
Class ends at 5:00PM
Rizzo, R.
presentation
-
2010.09.13 Mon
  • Biomolecular Structure
  1. Lipids, carbohydrates
  2. Nucleic acids, proteins
Rizzo, R.
presentation
-
2010.09.15 Wed
  • Molecular Interactions and Recognition
  1. Electrostastics, VDW interactions, hydrophobic effect, molecular recognition (binding energy)
  2. Inhibitors types: allosteric, transition state, covalent vs non-covalent, selective, competitive
Rizzo, R.
presentation
-
2010.09.20 Mon Class in diff location and time
*CHE-607 Modern Drug Design and Discovery: Computational Biology Lectures

1. Simmerling, C.

2. Rizzo, R.

NOTE:

For today only we will merge with Professor Ojima's "Modern Drug Design and Discovery" class.

CLASS ROOM CHANGE and TIME CHANGE:

Chemistry Department Room 410, 3:20PM - 5:20PM
-
2010.09.22 Wed
  • Intro. to Methods in 3-D Structure Determination
  1. Crystallography, NMR
  2. Structure Quality, PDB in detail
Rizzo, R.
presentation
-
2010.09.27 Mon
Quiz Prior Section I

SECTION II: MOLECULAR MODELING

  • Classical Force Fields
  1. All-atom Molecular Mechanics

1. Last, First

1. Mackerell, A. D., Jr., Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 2004, 25, 1584-604

1. van Gunsteren, W. F.; et al., Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064-92

2010.09.29 Wed
  • Force Field Development
  1. OPLS
  2. AMBER

1. Last, First

2. Last, First

1. Jorgensen, W. L.; et al., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236

2. Cornell, W. D.; et al., A Second Generation Force Field For the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197

1. Jorgensen, W. L.; et al., The Opls Potential Functions For Proteins - Energy Minimizations For Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657-1671

2. Bayly, C. I.; et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - the RESP Model. J. Phys. Chem. 1993, 97, 10269-10280

2010.10.04 Mon
  • Explicit Solvent Models
  1. Water models (TIP3P, TIP4P, SPC)
  2. Condensed-phase calculations (DGhydration)

1. Last, First

2. Last, First


1. Jorgensen, W. L.; et al., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935

2. Jorgensen, W. L.; et al., Monte Carlo Simulation of Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83, 3050-3054

-
2010.10.06 Wed
  • Continuum Solvent Models
  1. Generalized Born Surface Area (GBSA)
  2. Poisson-Boltzmann Surface Area (PBSA)

1. Last, First

2. Last, First

1. Still, W. C.; et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc 1990, 112, 6127-6129

2. Sitkoff, D.; et al., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988

-
2010.10.11 Mon
Quiz Prior Section II

SECTION III: SAMPLING METHODS

  • Molecular Conformation
  1. Small molecules, peptides, relative energy, minimization methods

1. Last, First

1. Howard, A. E.; Kollman, P. A., An analysis of current methodologies for conformational searching of complex molecules. J. Med. Chem. 1988, 31, 1669-75

1. Section 4 (PAGES 22-27) Colby College Molecular Mechanics Tutorial Introduction, 2004, Shattuck, T.W., Colby College

1. Holloway, M. K., A priori prediction of ligand affinity by energy minimization. Perspect. Drug Discov. Design 1998, 9-11, 63-84

2010.10.13 Wed
  • Primary Sampling Methods for Computer Simulations
  1. Molecular dynamics (MD)
  2. Monte Carlo (MC)

1. Last, First

2. Last, First

1. Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature 1990, 347, 631-9

2. Metropolis Monte Carlo Simulation Tutorial, LearningFromTheWeb.net, Accessed Oct 2008, Luke, B.

2. Jorgensen, W. L.; TiradoRives, J., Monte Carlo vs Molecular Dynamics for Conformational Sampling. J. Phys. Chem. 1996, 100,14508-14513

2. Metropolis, N.;et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, 1087-1092

2010.10.18 Mon
  • Predicting Protein Structure I.
  1. Ab initio prediction (protein-folding)
  2. Example Trp-cage

1. Last, First

2. Last, First

1. Dill, K. A.; Chan, H. S., From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10-19

2. Simmerling, C.;et al., All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 2002, 124,11258-9

1-2. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497-502

2010.10.20 Wed
  • Predicting Protein Structure II.
  1. Comparative (homology) modeling
  2. Case studies (CASP)

1. Last, First

2. Last, First

1. Marti-Renom, M. A.; et al., Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000,29,291-325

2. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005,15, 285-9

1. Fiser, A.; et al., Evolution and physics in comparative protein structure modeling. Acc. Chem. Res. 2002, 35, 413-21

2. Kryshtafovych, A.; et al., Progress over the first decade of CASP experiments. Proteins 2005, 61 Suppl 7, 225-36

2010.10.25 Mon
  • Enhanced Sampling Techniques
  1. Simulated annealing
  2. Replica Exchange

1. Last, First

2. Last, First

1. Brunger, A. T.;Adams, P. D., Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 2002, 35, 404-12

2. Sugita, Y.; Miyashita, N.; Yoda, T.; Ikeguchi, M.; Toyoshima, C., Structural Changes in the Cytoplasmic Domain of Phospholamban by Phosphorylation at Ser16: A Molecular Dynamics Study. Biochemistry 2006, 45, 11752-11761

1. Adams, P. D.; et al., Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement. Acta Crystallogr D Biol Crystallogr 1999, 55, 181-90

2. Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141-151

2. Lei, H.; Duan, Y., Improved sampling methods for molecular simulation. Curr Opin Struct Biol 2007, 17, 187-91

2010.10.27 Wed
Quiz Prior Section III


SECTION IV: LEAD DISCOVERY

  • Docking I.
  1. Introduction to DOCK

Guest Lecture

1. Mukherjee, S.

1. Ewing, T. J.; et al., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411-28

1. Moustakas, D. T.; et al., Development and Validation of a Modular, Extensible Docking program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601-619

2010.11.01 Mon
  • Docking II.
  1. Test Sets (binding modes)
  2. Test Sets (virtual screening)

Guest Lecture

1. Mukherjee, S.

1. Nissink, J. W. M.; et al., A new test set for validating predictions of protein-ligand interaction. Prot. Struct. Funct. Genetics 2002, 49, 457-471

2. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-82

1. The CCDC/Astex Test Set

2. ZINC - A free database of commercially-available compounds for virtual screening

2010.11.03 Wed
  • Discovery Methods I.
  1. Hotspot probes (GRID)
  2. COMFA

1. Last, First

2. Last, First

1. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849-57

2. Kubinyi, H., Encyclopedia of Computational Chemistry, Databases and Expert Systems Section, John Wiley & Sons, Ltd. 1998

1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967

2010.11.08 Mon
  • Discovery Methods II.
  1. Pharmacaphores in drug design
  2. De nova design

1. Last, First

2. Last, First

1. Chang, C.; et al., Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews 2006, 58, 1431-1450

2. Pegg, S. C.; Haresco, J. J.; Kuntz, I. D., A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 2001, 15, 911-33

-
2010.11.10 Wed
  • Discovery Methods Applications
  1. Human Carbonic Anhydrase
  2. Estrogen Receptor

1. Last, First

2. Last, First


1. Gruneberg, S.; Stubbs, M. T.; Klebe, G., Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem. 2002, 45, 3588-602

2. Waszkowycz, B.; Perkins, T. D. J.; Sykes, R. A.; Li, J., Large-scale virtual screening for discovering leads in the postgenomic era. IBM Systems Journal 2001, 40, 360-376

1. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967

2010.11.15 Mon
Quiz Prior Section IV


SECTION V: LEAD REFINEMENT

  • Free Energy Perturbation (FEP)
  1. Thermolysin with 2 ligands

1. Last, First

1. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 1987, 235, 574-6

1. Jorgensen, W. L., Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Accounts Chem. Res. 1989, 22, 184-189

1. Kollman, P., Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395-2417

2010.11.17 Wed
  • MM-PBSA, MM-GBSA
  1. Intro to Molecular Mechanics Poisson-Boltzmann / Generalized Born Surface Area Methods
  2. MM-GBSA Case Study

Guest Lecture

1. Last, First

2. Last, First

1. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889-897

2. Balius, T.; Rizzo, R. C.; Quantitative Prediction of Fold Resistance for Inhibitors of EGFR. Biochemistry 2009, 48, 8435-8448

-
2010.11.22 Mon
  • MM-GBSA case studies
  1. HIVgp41
  2. influenza

1. Last, First

2. Last, First

1. Strockbine, B.; Rizzo, R. C., Binding of Anti-fusion Peptides with HIVgp41 from Molecular Dynamics Simulations: Quantitative Correlation with Experiment. Prot. Struct. Funct. Bioinformatics 2007, 63, 630-642

2. Chachra, R.; Rizzo, R. C. Origins of Resistance Conferred by the R292K Neuraminidase Mutation via Molecular Dynamics and Free Energy Calculations. J. Chem. Theory Comput. 2008, 4, 1526-1540

-
2010.11.24 Wed
  • No Class: Following a Friday schedule
-
-
-
2010.11.29 Mon
  • Linear Response
  1. Intro to Linear Response (LR method)
  2. Inhibition of protein kinases (Extended LR method)

1. Last, First

2. Last, First

1. Aqvist, J.; Mowbray, S. L., Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations. J Biol Chem 1995, 270, 9978-81

2. Tominaga, Y.; Jorgensen, W. L.; General model for estimation of the inhibition of protein kinases using Monte Carlo simulations. J. Med. Chem. 2004, 47, 2534-2549

-
2010.12.01 Wed
  • Industry Lecture
  1. Working in a Pharmaceutical Company

Guest Lecture

Dr. Elizabeth Buck

1. OSI Pharmaceuticals

-
2010.12.06 Mon
  • Properties of Known Drugs
  1. Lipinski Rule of Five
  2. ADME prediction

1. Last, First

2. Last, First


1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3-26

2. Hou, T. J.; Xu, X. J.; ADME evaluation in drug discovery. J. Mol. Model, 2002, 8, 337-349


1. Lipinski, C. A., Chris Lipinski discusses life and chemistry after the Rule of Five. Drug. Discov. Today 2003, 8, 12-6

2. Hou, T. J.; Xu, X. J.; AMDE Evaluation in drug discovery 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43, 2137-2152

2010.12.08 Wed
  • Properties of Known Drugs and Protein Structure Prediction III.
  1. Molecular Scaffolds (frameworks) and functionality (side-chains)
  2. Protein Design

1. Last, First

Guest Lecture

2. Last, First

1. Bemis, G. W.; Murcko, M. A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-93

1. Bemis, G. W.; Murcko, M. A., Properties of known drugs. 2. Side chains. J. Med. Chem. 1999, 42, 5095-9

2. Street, A. G.; Mayo, S. L., Computational protein design. Structure. 1999, 7, 105-9

2. Lippow, S. M.; Tidor, B., Progress in computational protein design. Curr. Opin. Biotechnol. 2007, 18, 305-311

2010.12.13 Mon
FINAL EXAM
MON
TIME TBA
-
NOTE:

Unless otherwise noted the Final will be given in our regular class room.

FINAL EXAM IS CUMULATIVE

-