2012 DOCK tutorial with Streptavidin

From Rizzo_Lab
Revision as of 06:03, 24 February 2012 by WikiSysop (talk | contribs)
Jump to: navigation, search

For additional Rizzo Lab tutorials see DOCK Tutorials.

Introduction

DOCK

DOCK was developed by Irwin D. "Tack" Kuntz, Jr., PhD and colleagues at UCSF. Please see the webpage at UCSF DOCK.

DOCK is a molecular docking program used in drug discovery. This program, given a protein active site and a small molecule, tries to predict the correct binding mode of the small molecule in the active site, and the associated binding energy. Small molecules with highly favorable binding energies could be new drug leads. This makes DOCK a valuable drug discovery tool. DOCK is typically used to screen massive libraries of millions of compounds against a protein to isolate potential drug leads. These leads are then further studied, and could eventually result in a new, marketable drug. DOCK is works well as a screening procedure for generating leads, but not nearly as well for optimization of those leads. Original DOCK used only rigid body docking, DOCK 4.0, however, introduced flexible ligand docking by either a)incremental construction or b)random search.

Incremental construction (aka anchor and grow) could be roughly described by a three step process: 1) rigid portion of ligand (anchor) is docked by geometrical methods 2) non-rigid segments added; energy minimized 3) the resulting configurations are 'pruned' and energy re-minimized, yielding the docked configurations

Random search method involves docking random conformations of ligand as independent rigid objects. The number of conformations allowed per rotatable bond is arbitrary and user controlled. The receptor is always held rigid in DOCK 4.0.

Streptavidin & Biotin

Streptavidin is a tetrameric prokaryoke protein that binds the co-enzyme biotin with an extremely high affinity. The streptavidin monomer is composed of eight antiparallel beta-strands which folds to give a beta barrel tertiary structure. A biotin binding-site is located at one end of each β-barrel, which has a high affinity as well as a high avidity for biotin. Four identical streptavidin monomers associate to give streptavidin’s tetrameric quaternary structure. The biotin binding-site in each barrel consists of residues from the interior of the barrel, together with a conserved Trp120 from neighbouring subunit. In this way, each subunit contributes to the binding site on the neighboring subunit, and so the tetramer can also be considered a dimer of functional dimers.

Biotin is a water soluble B-vitamin complex which is composed of an ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring. It is a co-enzyme that is required in the metabolism of fatty acids and leucine. It is also involved in gluconeogenisis.

Downloading the PDB complex

Preparing the Enzyme and Ligand in Chimera

Generation of Enzyme Surface and Spheres

Enzyme Surface

Spheres

Generation of Box and Grid

Box

Grid

Running DOCK

You can run dock with either a rigid or flexible ligand. For either one, you need to create an input file.

Lets start with a rigid ligand. We need to first make the input file by typing in:

vi rigid.in

The rigid.in file is:

ligand_atom_file                                             1DF8.ligand.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               yes
use_rmsd_reference_mol                                       no
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
flexible_ligand                                              no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
contact_score_secondary                                      no
grid_score_primary                                           yes
grid_score_secondary                                         no
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       grid
dock3.5_score_secondary                                      no
continuous_score_secondary                                   no
gbsa_zou_score_secondary                                     no
gbsa_hawkins_score_secondary                                 no
amber_score_secondary                                        no
minimize_ligand                                              yes
simplex_max_iterations                                       1000
simplex_tors_premin_iterations                               0
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_random_seed                                          0
simplex_restraint_min                                        no
atom_model                                                   all
vdw_defn_file                                                vdw_AMBER_parm99.defn
flex_defn_file                                               flex.defn
flex_drive_file                                              flex_drive.tbl
ligand_outfile_prefix                                        rigid
write_orientations                                           no
num_scored_conformers                                        5000
write_conformations                                          no
cluster_conformations                                        yes
cluster_rmsd_threshold                                       2.0
rank_ligands                                                 no 

This assumes that vdw_defn_file, flex_defn_file and flex_drive_file is in the current directory. You can copy these files from /nfs/user03/sudipto/dock6/parameters/

Now you can run this file through a c shell script. We made ours like this:

vi dock6.rigid.csh
#!/bin/csh
#PBS -l nodes=1:ppn=2       # use one nodes with 2 processors
#PBS -l walltime=01:00:00   # run for a maximum of 1 hour
#PBS -N dock6               # call this job dock6
#PBS -M user@ic.sunysb.edu  # your email address (optional) 
#PBS -j oe                  # join the output and error files
#PBS -o pbs.out             # call the output of the script pbs.out

cd /nfs/user03/username/1DF8_setup
/nfs/user03/sudipto/dock6/bin/dock6 -i rigid.in -o rigid.out

Now we do something similar with flexible binding:

vi flex.in
ligand_atom_file                                             1DF8.ligand.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               yes
use_rmsd_reference_mol                                       no
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
flexible_ligand                                              yes
min_anchor_size                                              40
pruning_use_clustering                                       yes
pruning_max_orients                                          100
pruning_clustering_cutoff                                    100
pruning_conformer_score_cutoff                               25.0
use_clash_overlap                                            no
write_growth_tree                                            no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
contact_score_secondary                                      no
grid_score_primary                                           yes
grid_score_secondary                                         no
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       grid
dock3.5_score_secondary                                      no
continuous_score_secondary                                   no
gbsa_zou_score_secondary                                     no
gbsa_hawkins_score_secondary                                 no
amber_score_secondary                                        no
minimize_ligand                                              yes
minimize_anchor                                              yes
minimize_flexible_growth                                     yes
use_advanced_simplex_parameters                              no
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_anchor_max_iterations                                500
simplex_grow_max_iterations                                  20
simplex_grow_tors_premin_iterations                          20
simplex_random_seed                                          0
simplex_restraint_min                                        no
atom_model                                                   all
vdw_defn_file                                                vdw_AMBER_parm99.defn
flex_defn_file                                               flex.defn
flex_drive_file                                              flex_drive.tbl
ligand_outfile_prefix                                        flex
write_orientations                                           no
num_scored_conformers                                        5000
write_conformations                                          no
cluster_conformations                                        yes
cluster_rmsd_threshold                                       2.0
rank_ligands                                                 no

The main difference between the rigid docking and flex docking input file is that flexible_ligand is set to yes.

Now you can run this file through a .csh. We made ours like this:

vi dock6.flex.csh
#!/bin/csh
#PBS -l nodes=1:ppn=2
#PBS -l walltime=01:00:00
#PBS -N dock6
#PBS -M user@ic.sunysb.edu
#PBS -j oe
#PBS -o pbs2.out
cd /nfs/user03/username/1DF8_setup
/nfs/user03/sudipto/dock6/bin/dock6 -i flex.in -o flex.out

Docking Results

Rigid Dock

Best Rigid Docking Result (grid score = -63.980; RMSD = 0.159). For comparison, the crystallographic ligand is in light blue.

Virtual Screening

Sample flex docking input file

ligand_atom_file                       3_t60.mol2
limit_max_ligands                      no
skip_molecule                          no
read_mol_solvation                     no
calculate_rmsd                         no
use_database_filter                    yes
dbfilter_max_heavy_atoms               999
dbfilter_min_heavy_atoms               0
dbfilter_max_rot_bonds                 999
dbfilter_min_rot_bonds                 0
dbfilter_max_molwt                     9999.0
dbfilter_min_molwt                     0.0
dbfilter_max_formal_charge             10.0
dbfilter_min_formal_charge             -10.0
orient_ligand                          yes
automated_matching                     yes
receptor_site_file                     selected_spheres.sph
max_orientations                       1000
critical_points                        no
chemical_matching                      no
use_ligand_spheres                     no
use_internal_energy                    yes
internal_energy_rep_exp                12
flexible_ligand                        yes
min_anchor_size                        5
pruning_use_clustering                 yes
pruning_max_orients                    100
pruning_clustering_cutoff              100
pruning_conformer_score_cutoff         25.0
use_clash_overlap                      no
write_growth_tree                      no
bump_filter                            no
score_molecules                        yes
contact_score_primary                  no
contact_score_secondary                no
grid_score_primary                     yes
grid_score_secondary                   no
grid_score_rep_rad_scale               1
grid_score_vdw_scale                   1
grid_score_es_scale                    1 
grid_score_grid_prefix                 grid
dock3.5_score_secondary                no
continuous_score_secondary             no
gbsa_zou_score_secondary               no
gbsa_hawkins_score_secondary           no
amber_score_secondary                  no
minimize_ligand                        yes
minimize_anchor                        yes
minimize_flexible_growth               yes
use_advanced_simplex_parameters        no
simplex_max_cycles                     1
simplex_score_converge                 0.1
simplex_cycle_converge                 1.0
simplex_trans_step                     1.0
simplex_rot_step                       0.1
simplex_tors_step                      10.0
simplex_anchor_max_iterations          1000
simplex_grow_max_iterations            20
simplex_grow_tors_premin_iterations    0
simplex_random_seed                    0
simplex_restraint_min                  no
atom_model                             all
vdw_defn_file                          vdw.defn
flex_defn_file                         flex.defn
flex_drive_file                        flex_drive.tbl
ligand_outfile_prefix                  vs
write_orientations                     no
num_scored_conformers                  1
rank_ligands                           yes
max_ranked_ligands                     20000


Sample script with openmpi using 8 processors on seawulf

#! /bin/tcsh
#PBS -l nodes=4:ppn=2
#PBS -l walltime=200:00:00
#PBS -o zzz.qsub.out
#PBS -j oe
#PBS -V

set nprocs = `wc -l $PBS_NODEFILE | awk '{print $1}'`

echo "Running on ${nprocs} processors"

cd /nfs/user03/sudipto/1DF8_vs

mpirun -np $nprocs dock6.mpi -i vs.in -o vs.out