2017 Dock tutorial

From Rizzo_Lab
Revision as of 17:36, 30 January 2017 by Stonybrook (talk | contribs) (II. Preparing the Receptor and Ligand)
Jump to: navigation, search

For additional Rizzo Lab tutorials see DOCK Tutorials. Use this link Wiki Formatting as a reference for editing the wiki. This tutorial was developed collaboratively by a subsection of the AMS 536 class of 2017, using DOCK v6.8.

I. Introduction


DOCK is a molecular docking program used in drug discovery. It was developed by Irwin D. Kuntz, Jr. and colleagues at UCSF (see UCSF DOCK). This program, given a protein binding site and a small molecule, tries to predict the correct binding mode of the small molecule in the binding site, and the associated binding energy. Small molecules with highly favorable binding energies could be new drug leads. This makes DOCK a valuable drug discovery tool. DOCK is typically used to screen massive libraries of millions of compounds against a protein to isolate potential drug leads. These leads are then further studied, and could eventually result in a new, marketable drug. DOCK works well as a screening procedure for generating leads, but is not currently as useful for optimization of those leads.

DOCK 6 uses an incremental construction algorithm called anchor and grow. It is described by a three-step process:

  1. Rigid portion of ligand (anchor) is docked by geometric methods.
  2. Non-rigid segments added in layers; energy minimized.
  3. The resulting configurations are 'pruned' and energy re-minimized, yielding the docked configurations.


In this tutorial we will use PDB code 4QMZ, the deposited crystal structure of MST3 in complex with Sunitinib.

Organizing Directories

While performing docking, it is convenient to adopt a standard directory structure / naming scheme, so that files are easy to find / identify.For this tutorial, we will use something similar to the following:


In addition, most of the important files that are derived from the original crystal structure will be given a prefix that is thsame as the PDB code, '4QMZ'.The following sections in this tutorial will adhere to this directory structure/naming scheme.

II. Preparing the Receptor and Ligand

Download the PDB file (4QMZ)

4QMZ was moved into 00.files

4qmz.pdb was copied to raw_4qmz.pdb

raw_4qmz.pdb was opened with VI terminal editor

    The header information, connect records, ions (atoms 2333 and 2334) and waters were deleted
    Res 178 = TPO, or phosphonothreonine
    Res 178 (TPO) was renamed to THR (Threonine) and HETATM renamed to ATOM, in addition the acanonical atoms were removed from the pdb leaving a deprotonated threonine (Atoms 1311-1314 in 4qmz.pdb)
    Res B49 was renamed to LIG and made Chain B

raw_4qmz.pdb was copied twice to 4qmz_rec.pdb and 4qmz_lig.pdb

4qmz_rec.pdb was opened with VI terminal editor

    LIG atoms, or chain B, was deleted and the file saved

4qmz_lig.pdb was opened with VI terminal editor

    Protein atoms, or chain A, was deleted and the file saved

4qmz_rec.pdb was loaded into tleap as a quality control measure

    source leaprc.protein.ff14SB
    lin = loadpdb /path/to/4qmz_rec.pdb
         2340 Hydrogens added, 1 heavy atom added (CSER RES 299, Chain A, OXT 12) 
    check lin
    saveamberparm lin /path/to/4qmz_rec_leap.parm7 /path/to/4qmz_rec_leap.crd

Running the receptor through leap ensures a reasonable starting structure and can help identify obvious issues sooner rather than later.

III. Generating Receptor Surface and Spheres

IV. Generating Box and Grid

V. Docking a Single Molecule for Pose Reproduction

VI. Virtual Screening

VIII. Frequently Encountered Problems